Internal Energy of Ions Generated by Matrix-Assisted Laser Desorption/Ionization

Guanghong Luo, Ioan Marginean, and Akos Vertes*

Department of Chemistry, George Washington University, Washington, D.C., 20052

To provide an objective measure of the correlation between the internal energy content of ions generated by matrix-assisted laser desorption/ionization (MALDI) and the matrix properties, a series of well-characterized benzyl-substituted benzylpyridinium salts were used as thermometer molecules (TMs). To determine the internal energy variations of analyte ions, the survival yields of TM molecular ions were measured in three different matrixes, α-cyano-4-hydroxycinnamic acid (CHCA), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid, SA), and 2,5dihydroxybenzoic acid (DHB). Statistical analysis of extensive survival yield data indicated that there were discernible differences among the studied matrixes. The experimental survival yields of the TM ions were used to calculate the unimolecular decomposition rate coefficient. Corresponding theoretical reaction rate coefficients were calculated based on the Rice-Ramsperger-Kassel-Marcus (RRKM) theory for different internal energies of the TMs. The internal energies of the ions were obtained by projecting the experimental rate coefficient values onto the theoretical curves obtained by the RRKM calculations. Molecular ions of the analytes showed decreasing survival yields and consequently increasing internal energies in the three matrixes in the following order: CHCA, SA, and DHB with "cold", "intermediate", and "hot" characteristics, respectively. Qualitatively, this could be interpreted as a significant departure from earlier observations suggesting an opposite trend. The classification as hot and cold matrixes should be further qualified by accounting for the influence of laser pulse energy and the nature of the analyte. Higher laser pulse energy led to an elevated level of energy transferred to the analyte, which in turn resulted in a diminished survival yield of the analyte molecular ion. It is quite possible that the assignment of hot and cold reverses as the analyte or the laser energy changes. These findings can help predict the outcome of postsource decay experiments and clarify the concept of hot and cold matrixes in MALDI mass spectrometry.

Since its introduction in the late 1980s, matrix-assisted laser desorption/ionization (MALDI) has become an increasingly significant technique in both biomolecular and macromolecular analysis.^{1,2} Progress in the emerging field of proteomics clearly hinges on fast characterization of proteins and peptides, a task MALDI and electrospray ionization (ESI) mass spectrometry are uniquely positioned to perform.³ Postsource decay experiments in MALDI are commonly utilized to gain primary structure as well as posttranslational modification data for peptides, information fundamental for protein identification.

Understanding ion production in MALDI can significantly contribute to the more efficient utilization of this method. Tasks ranging from matrix selection to fragmentation control might become rational steps in qualitative and potentially in quantitative analysis. There is considerable consensus over the mechanism of desorption initiated by UV irradiation,^{4–7} but the ionization mechanism is still under debate.

An adequate ionization mechanism should be consistent with the thermodynamics of the process and should explain the presence and abundance of all the ions in the MALDI mass spectrum. At present, there is no single acceptable mechanism;^{7,8} thus, the prediction of ion yields is very difficult if not impossible. It is expected that detailed analysis of the energetics involved can enhance our understanding of the ionization process.

The internal energy of the molecular ions at generation determines the available fragmentation pathways. Due to experimental difficulties, there have been few reports on the internal energy of ions created by soft ionization methods, such as ESI and MALDI.^{9,10} In a comprehensive paper, Vékey reviewed the effect of ion internal energies on mass spectra and the link between the internal energy of ions and the ionization mechanism of various ionization techniques.¹¹ The main methods to measure the internal energy of ions in mass spectrometry had been the thermometer molecule (TM) method,¹² the deconvolution method,¹³

- (5) Vertes, A.; Levine, R. D. Chem. Phys. Lett. 1990, 171, 284-290.
- (6) Vertes, A.; Irinyi, G.; Gijbels, R. Anal. Chem. 1993, 65, 2389-2393.
- (7) Zenobi, R.; Knochenmuss, R. Mass Spectrom. Rev. 1998, 17, 337-366.
- (8) Glückmann, M.; Pfenninger, A.; Krüger, R.; Thierolf, M.; Karas, M.; Horneffer, V.; Hillenkamp, F.; Strupat, K. Int. J. Mass Spectrom. 2001, 210/ 211, 121–132.
- (9) Mowry, C. D.; Johnston, M. V. J. Phys. Chem. 1994, 98, 1904-1909.
- (10) Stevenson, E.; Breuker, K.; Zenobi, R. J. Mass Spectrom. 2000, 35, 1035– 1041.
- (11) Vékey, K. J. Mass Spectrom. 1996, 31, 445-463.

Analytical Chemistry, Vol. 74, No. 24, December 15, 2002 6185

^{*} Corresponding author: (phone) 202-994-2717; (fax) 202-994-5873; (e-mail) vertes@gwu.edu.

^{10.1021/}ac020339z CCC: $22.00\ @$ 2002 American Chemical Society Published on Web 11/16/2002

⁽¹⁾ Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Rapid Commun. Mass Spectrom. **1988**, 2, 151.

⁽²⁾ Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Anal. Chem. 1991, 63, 1193A-1201A.

⁽³⁾ Godovac-Zimmermann, J.; Brown, L. R. Mass Spectrom. Rev. 2001, 20, 1-57.

⁽⁴⁾ Vertes, A.; Gijbels, R.; Levine, R. D. Rapid Commun. Mass. Spectrom. 1990, 4, 228–233.

and the survival yield method, $^{\rm 14}$ later refined to include the kinetic shift. $^{\rm 15}$

The survival yield method, based on a series of TMs (benzylsubstituted benzylpyridinium salts), was utilized by De Pauw¹⁵ for internal energy determination of ions generated by ESI. The rationale behind using this group of compounds lies with the simple fragmentation mechanism and with the well-studied thermodynamics of a wide range of *N*-alkylpyridinium cations.¹⁸ The different substituents on the benzyl group result in different critical energies for the unimolecular decomposition reaction. The simple fragmentation pattern (the only analyte peaks observed in the mass spectrum correspond to the molecular ion, $M^+ = Py^+F$, and to the substituted benzyl cation fragment, F^+ , produced by pyridine, Py, loss)

$$Py^+F \rightarrow F^+ + Py$$

enables the simple assessment of the decomposition of molecular ions. The survival yield of $M^{\rm +}$

$$SY = \frac{I(M^{+})}{I(F^{+}) + I(M^{+})}$$
(1)

in ESI was shown to depend on the internal energy of the TM.¹⁴ In eq 1, $I(M^+)$ and $I(F^+)$ are the abundances corresponding to the molecular ion and the fragment ion, respectively.

Fragmentation close to the laser irradiance threshold for ion generation in MALDI can be viewed as a unimolecular decomposition reaction; thus, the experimental survival yields can be used to calculate the rate coefficients. These rate coefficients can also be calculated using the Rice–Ramsperger–Kassel–Marcus (RRKM) theory¹⁸ for a particular internal energy of the ion. By projecting the experimental reaction coefficients on the RRKM curve, an estimate of the internal energy of the ions can be obtained. This method represents a simplification of the original survival yield method that has used additional assumptions on the functional form of the survival yield as a function of critical energy (see later).

There is only semiquantitative data available on the internal energy of ions in MALDI. In an early study, we compared the energy content of ions generated by direct laser desorption and MALDI using triphenylphosphonium salts as TMs.¹⁹ Although reduced fragmentation in MALDI was clearly established, no quantitative measure for the ion internal energies was obtained. In this study, we extend the use of *N*-alkylpyridinium cations as TMs to characterize some of the most common MALDI matrixes

- (12) Wysocki, V. H.; Kenttamaa, H. I.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1987, 75, 181–208.
- (13) Vékey, K.; Brenton, A. G.; Beynon, J. H. J. Phys. Chem. 1986, 90, 0, 3569– 3577.
- (14) Derwa, F.; De Pauw, E. Spectrosc. Int. J. 1989, 7, 227-232.
- (15) Collette, C.; Drahos, L.; De Pauw, E.; Vékey, K. Rapid Commun. Mass Spectrom. 1998, 12, 1673–1678.
- (16) Derwa, F.; De Pauw, E.; Natalis, P. Org. Mass Spectrom. 1991, 26, 117– 118.
- (17) Katritzky, A. R.; Watson, C. H.; Dega-Szafran, Z.; Eyler, J. R. J. Am. Chem. Soc. 1990, 112, 2471–2478.
- (18) Baer, T.; Mayer P. M. J. Am. Soc. Mass Spectrom. 1997, 8, 103-115.
- (19) Claereboudt, J.; Claeys, M.; Geise, H.; Gijbels, R.; Vertes, A. J. Am. Soc. Mass Spectrom. 1993, 4, 798–812.

and determine the survival yield of analyte ions desorbed from a particular matrix at different laser pulse energies. This approach promises to provide a quantitative measure for the internal energy of MALDI generated ions. Correlations based on these data can be established between the internal energy, metastable decay, and fragmentation of molecular ions.

EXPERIMENTAL SECTION

Instrumentation. The molar absorptivity of the TMs at the laser wavelength was measured by a UV-visible spectrometer (UV-2401PC, Shimadzu Scientific Instruments, Inc., Columbia, MD). The time-of-flight mass spectrometer (TOF-MS) used in the MALDI experiments was a home-built linear instrument equipped with a nitrogen laser at 337 nm (VSL-337ND, Laser Science Inc., Newton, MA). A detailed description of this instrument can be found elsewhere.²⁰ The laser pulse energy was accurately adjusted by a variable attenuator (935-5-OPT, Newport, Fountain Valley, CA) and monitored by a pyroelectric joule meter (model J4-05, Molectron, Portland, OR). The laser beam was focused onto the probe tip at 45° to achieve $\sim 10^{6}$ W/cm² irradiance. The generated ions were extracted from the 1.0-cm-long accelerating region by 30.0 kV into the 2.15-m field-free drift region of the TOF-MS. A dual-microchannel plate assembly (30293, Galileo Electrooptics Corp., Sturbridge, MA) biased to 1700 V was used for the detection of ions. The signal was amplified by a fast preamplifier (9305, EG&G, Oak Ridge, TN) and recorded by a 1.5-GHz digital oscilloscope (LC684DXL, LeCroy, Chestnut Ridge, NY) at 500 Msamples/s sampling rate.

Materials. The matrixes, α -cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), and 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid, SA) were obtained from Sigma Chemical Co. (St. Louis, MO) and from Aldrich Chemical Co. (Milwaukee, WI), respectively. They were used without further purification. Acetonitrile solvent (HPLC grade) was purchased from Fisher Scientific (Springfield, NJ) whereas deionized water (18.2 M Ω ·cm) was produced using an E-pure system (Barnstead, Dubuque, IA). All the benzyl-substituted benzylpyridinium chloride salts, 4-chloro- (4C), 4-floro- (4F), 4-methoxy- (4MO), 3-methoxy- (3MO), 4-methyl- (4M), 3-methyl- (3M), and 2-methyl- (2M), were custom synthesized by Celestial Specialty Chemicals (Nepean, Ontario, Canada). These chemicals were certified as reagent grade, and they were used without further processing.

Sample Preparation. Stock solutions of the analyte $(5 \times 10^{-4}-5 \times 10^{-3} \text{ M})$ and the matrix (saturated) were prepared fresh daily by using 70% acetonitrile in deionized water. A 2- μ L sample of analyte solution was mixed with 10 μ L of matrix solution to obtain a matrix to analyte molar ratio of approximately 2000–3000. For most samples, 2 μ L of this mixture was deposited on a stainless steel probe and air-dried at room temperature. The DHB samples were vacuum-dried using an evacuation chamber and a dual-stage rotary vane pump.

Data Acquisition and Processing. For each matrix–analyte combination, the minimum laser pulse energy that resulted in a fragment ion peak was determined. Then, each sample was analyzed at three to five laser pulse energies slightly above this value. Twenty spectra were acquired at each of 10 randomly

⁽²⁰⁾ Olumee, Z.; Sadeghi, M.; Tang, X.; Vertes, A. Rapid Commun. Mass Spectrom. 1995, 9, 744–752.

Figure 1. MALDI mass s pectrum of 4C-benzylpyridinium chloride TM from DHB. Matrix ions are observed along with the molecular ions (M^+) a single major fragment (F^+), and a negligible amount of pyridinium ions (Py⁺) from the TM.

Figure 2. Histogram of survival yield data for 3MO-benzylpyridinium chloride ions desorbed from CHCA matrix. The data indicate that the average survival yield is a meaningful representation of the data set.

selected spots on the sample surface, resulting in a total of 200 spectra for every sample at every considered energy level. Figure 1 presents a mass spectrum collected for 4C-benzylpyridinium chloride in DHB. Data acquisition and processing were carried out on a PC using a homemade code in LabVIEW programming environment (National Instruments, Austin, TX). The ion current peaks corresponding to the molecular and fragment ions were integrated in time, and the experimental survival yields were calculated. To test the validity of this procedure, survival yield histograms were constructed for each sample. As demonstrated in Figure 2, the distribution of survival yields exhibited well-defined mean values.

According to the unimolecular kinetics valid for the ion source of a linear TOF-MS at low pressures, the survival yields were converted into experimental rate coefficients, $k_{exp}(E)$,

$$k_{\rm exp} = -(1/\tau) \ln(\rm{SY}) \tag{2}$$

Table 1. Molar Absorptivities of R-Benzylpyridinium Chlorides and Matrixes in Aqueous Solution at 337 nm

R	$\begin{array}{c} \epsilon. \\ \mathrm{L} \ \mathrm{mol}^{-1} \\ \mathrm{cm}^{-1} \end{array}$	R	$\begin{array}{c} \epsilon. \\ L \operatorname{mol}^{-1} \\ \mathrm{cm}^{-1} \end{array}$	matrix	$\epsilon. L mol^{-1} cm^{-1}$
4-methyl- 3-methyl- 4-floro- 2-methyl-	0.000 0.113 0.210 0.431	4-chloro- 3-methoxy- 4-methoxy-	0.495 8.55 40.9	CHCA SA DHB	17800 9170 3340

where τ is the reaction time in the accelerating region. The reaction time was selected as 100 ns for all TMs, an estimate supported by delayed extraction time values for small molecules on TOF-MS instruments as well as by plume dynamics calculations.⁶

Theoretical Calculations. The vibrational frequencies, needed in the RRKM rate coefficient calculations, were obtained from AM1 semiempirical molecular orbital calculations. The AM1 calculations were performed using PC Spartan version 1.3 (Wavefunction, Irvine, CA). The transition structure for each fragmentation reaction was determined by calculating the heat of formation (ΔH_i) of the ion for different configurations in which the reaction coordinate was constrained to different values (1.3–2.5 Å). The assumption was made that the reaction coordinate corresponds to the stretching of the C–N bond between the benzyl group and the pyridine ring.

Accounting for the vibrational degrees of freedom as harmonic oscillators, the classical RRKM rate coefficient, $k_{\text{RRKM}}(E)$, for unimolecular decomposition is

$$k_{\text{RRKM}}(E) = G^*(E - E_0) / h\rho(E)$$
(3)

where $G^*(E - E_0)$ is the total number of states between the E_0 and the *E* energy levels in the TS and $\rho(E)$ is the density of states at energy *E* for the reactant in EG (see, for example, ref 18). For the RRKM unimolecular decomposition rates of the TM ions, the Beyer–Swinehart direct count method was used to determine the density of states in EG and $\rho(E)$ and the number of states of the TS, $G^*(E - E_0)$ at a given internal energy, *E*.¹⁸ The RRKM calculations were performed with a homemade program on a PC and tested against literature data on simple systems.²¹

RESULTS AND DISCUSSION

The laser energy is coupled into the sample through optical absorption. To demonstrate that energy is primarily deposited into the matrix molecules, we compared the relevant optical properties of matrixes and TMs. Molar absorptivities derived from the UV– visible spectra of these compounds are presented in Table 1. At the laser wavelength (337 nm), the optical absorption of the TMs was negligible compared to the matrix absorption. Although the spectra measured in solution may differ somewhat from the spectra of solid materials,²² the large differences between the molar absorptivities of matrixes and TMs suggested that the laser light was predominantly absorbed by the matrix. The data in Table

⁽²¹⁾ Drahos, L.; Vékey, K., J. Mass Spectrom. 2001, 36, 237-263.

⁽²²⁾ Allwood, D. A.; Dreyfus, R. W.; Perera, I. K.; Dyer, P. E. Appl. Surf. Sci. 1997, 109/110, 154–157.

Figure 3. Survival yield results for substituted benzylpyridinium ions: 2M (**I**), 3M (**O**), 4M (**O**), 3MO (**V**), 4MO (**A**), 4C (**★**), and 4F (\Rightarrow) in matrixes CHCA (black), SA (blue), and DHB (red).

1 show that the lowest matrix-to-TM molar absorptivity ratio (in the case of DHB and 4MO) is \sim 80. Furthermore, the high matrix-to-TM molar ratio in MALDI samples makes light absorption by the matrix even more prevalent.

To differentiate direct laser desorption from MALDI, we studied the laser-induced mass spectra of neat TMs. The laser pulse energy needed for ion generation from neat TMs consistently exceeded the energy required for MALDI, e.g., by a factor of 2 for CHCA matrix. This observation was important because it proved that ion production in the survival yield experiments was indeed assisted by the matrix.

The next step was to prove that the choice of TMs was actually appropriate for monitoring the MALDI process. If there was no fragmentation observed or the fragmentation pattern did not change with experimental parameters, such as the selection of matrix or the laser pulse energy, the particular choice of TMs would have to be revised. Statistical analysis of extensive survival yield data indicated that TM fragmentation was consistently observed and there were discernible differences among the studied matrixes. Molecular ions of the analyte showed decreasing survival yields, indicating increasing internal energies in the three matrixes in the following order: CHCA, SA, and DHB (see Figure 3).

Changing the laser pulse energy indicated the presence of two MALDI thresholds for all three matrixes. At the first threshold ($\sim 10 \text{ mJ/cm}^2$ in CHCA matrix), the molecular ion of the TMs appeared in the spectra. At this point, the survival yield was equal to 1 as no TM fragment ions were observed. It is worth noting that at these pulse energies most of the time there were no matrix-related ions present. This can be viewed as an indication of preformed TM molecular ions in the solid. As the selected TMs are all salts, the appearance of preformed ions is quite fitting. At the second threshold ($\sim 15 \text{ mJ/cm}^2$ in CHCA), the fragment ion emerged and the survival yield declined from 1. As expected, further increase in laser pulse energy led to diminished survival yield of the analyte molecular ion. This was attributed to increased energy deposition into the matrix and an elevated level of energy transferred to the analyte. Figure 3 presents the survival yields

of the various TMs in CHCA, SA, and DHB versus the laser pulse energy above the second threshold.

To obtain a quantitative measure of the internal energy of the TMs, the survival yield data were converted to k_{exp} according to eq 2. Subsequently, the $k_{exp} = k_{RRKM}(E)$ equation was solved numerically for E to obtain the internal energy values. The determination of the $k_{\text{RRKM}}(E)$ based on eq 3 required information on the geometry, energetics, and vibrational frequencies of the EG and TS. The procedure described above is a simplified version of the survival yield method. There are two important changes. First, the internal energy is not represented by a distribution but by its average value. This simplification avoids having to make assumptions about the nature of the distribution (thermal vs nonthermal). As the laser excitation typically generates nonequilibrium internal energy distributions, this simplification also leads to a more reliable representation of the data. The other important difference is that we avoid the assumption of a sigmoidal relationship between E_0 and survival yield. This arbitrary hypothesis is used in the earlier versions of the survival yield method to obtain internal energy distributions (as opposed to the average value).¹⁶

To find the TS for the unimolecular decomposition of the TMs, AM1 calculations were carried out. Critical energies were obtained from refs 15 and 16. The vibrational frequencies for the studied TMs have been obtained by AM1 calculations and are provided as Supporting Information.

The 4MO compound also shows significantly lower values in the survival yields. This behavior could be attributed to direct energy deposition into this species from the laser (due to the larger molar absorptivity of this compound; see Table 1) or could be the consequence of the lower critical energy. For a given TM, lower E_0 leaves more energy available for the fragmentation reaction. Initial inspection of Figure 3 gives the impression that 4MO data does not fit with the rest of the data set. In the following analysis, it becomes obvious that this apparent discrepancy disappears when the survival yield data are converted into internal energies.

With the help of E_0 and vibrational frequencies for the EG and the TS, eq 3 was utilized to determine the RRKM rate coefficients as a function of internal energy. The results of the RRKM calculations for the seven TM ions are presented in Figure 4. Because of its structure and its low E_0 , for any given energy the rate coefficient for the unimolecular decomposition of 4MO is higher than that for the fragmentation of the other ions. At the other extreme, the 3MO ion has the lowest fragmentation rate coefficient for the relevant energies. The critical energy alone does not completely determine the rate coefficients. For example, the 4F shows lower $k_{\text{RRKM}}(E)$ values than 3MO at low energies, but it approaches roughly the same values at higher energies.

The experimental rate coefficients, k_{exp} , were calculated from the experimental survival yield values according to eq 2. Solving the $k_{exp} = k_{RRKM}(E)$ equation for *E* provided the internal energy values consistent with the survival yield data. These internal energies for all the TMs, matrixes, and laser energies are summarized in Figure 5. Looking at the average internal energy values found for the different matrixes, it is apparent that CHCA imparts the least amount of energy (3.69 ± 0.21 eV) on the TMs followed by SA (4.04±0.27 eV) and DHB (4.30 ± 0.29 eV). The corresponding confidence intervals for 95% probability are 0.45,

Figure 4. RRKM rate coefficients for substituted benzylpyridinium ions (2M (\blacksquare), 3M (\bullet), 4M (\bullet), 3MO (\checkmark), 4MO (\blacktriangle), 4C (\star), and 4F (\updownarrow)) as a function of internal energy.

Figure 5. Internal energies of substituted benzylpyridinium ions (2M (\blacksquare), 3M (\bullet), 4M (\bullet), 3MO (\checkmark), 4MO (\blacktriangle), 4C (\bigstar) and 4F (\Leftrightarrow)) in matrixes: CHCA (black), SA (blue) and DHB (red) as a function of laser pulse energy.

0.56, and 0.59 eV, respectively. This corresponds to a relative matrix assignment of cold, intermediate, and hot for CHCA, SA, and DHB, respectively.

Previous qualitative assignments of energy-transfer properties in MALDI were based on fragmentation patterns of small peptides.²³ In that study, however, laser pulse energy values were not provided. Qualitatively, our findings can be interpreted as a significant departure from these earlier data²³ asserting an opposite trend. It is true that, at similar laser energies, CHCA might seem "hotter" than SA or DHB, inducing more fragmentation in the analyte species. However, as has been demonstrated, the laser pulse energy cannot be neglected in assigning energy-transfer efficiency from matrix to analyte. Furthermore, the efficiency of energy transfer can also depend on the analyte. For example, the role of preformed versus protonated ions should be further analyzed.

Analyzing the slopes in Figure 5, we found that in most cases the internal energy transferred to the analyte molecules increased as the laser pulse energy increased; i.e., the expected trend was confirmed. Although there was significant scatter in the rate of increase, differences could be established for the different matrixes. Comparing the average gains in internal energy for the three matrixes, one could discern that with the increase of laser energy the internal energy in CHCA grew faster than in the other two matrixes. In other words, while CHCA is the "coldest" matrix of the three, with increasing laser energy, it grows hotter faster than SA or DHB.

These observations in CHCA point to its unique behavior, which has been noted in the literature. This matrix is known to have the highest protonated molecular ion yield for glycine homologues²⁴ and lowest laser irradiance threshold for MALDI²⁵ among the three. One can argue that the lowest threshold value as well as being a relatively cold matrix are linked to the exceptionally high molar absorptivity for CHCA (at 337 nm, \sim 5 times higher than DHB; see Table 1). As the three matrixes have similar phase transition temperatures¹⁰ (despite the differences in the hydrogen-bonding networks), the threshold energy for laser desorption is primarily governed by the light absorption properties. Because CHCA is capable of absorbing the laser light more efficiently, it can induce the desorption at lower laser energies. During the desorption process, the matrix molecules continue to absorb energy from the laser and transfer it to the analyte molecules. Because lower laser energy is available in the case of CHCA as compared to SA or DHB, the TM ions receive lower energy in this matrix through both direct absorption and nonradiative energy transfer. This scenario assumes that there are preformed ions in the sample. As demonstrated above, this is the case with the salts used as TMs; thus, ion yields are primarily determined by the release of ions from the solid. Furthermore, one can speculate that even in the case of neutral analytes enhanced matrix-analyte interaction can provide an efficient way of both transferring protons and communicating internal energy to the analyte molecules. Presumably, both of these processes take place through hydrogen-bonding networks.

The bottleneck model^{4,5} can provide a partial explanation for the results. We can assume that the hydrogen bonds are mainly responsible for the interaction between the matrix molecules and the analyte molecules embedded in the matrix crystal. Each hydrogen bond provides a channel for energy transfer between the matrix and the analyte. The matrix that forms the most hydrogen bonds with the TMs would be able to transfer the energy most efficiently to the analyte and thus induce the highest degree of fragmentation. A simple count shows that each DHB molecule is able to form three hydrogen bonds, while CHCA and SA can only form two hydrogen bonds. This argument provides a qualitative explanation of why DHB can be viewed as the "hottest" among the three matrixes in this study. Although this argument may seem simplistic, a more in-depth look at the bottleneck model can reveal additional support for it. In ref 4, the effect of matrix absorption coefficients as well as the impact of

⁽²³⁾ Stimson, E.; Truong, O.; Richter, W. J.; Waterfield, M. D.; Burlingame, A. L. Int. J. Mass Spectrom. Ion Processes 1997, 169/170, 231–240.

 ⁽²⁴⁾ Olumee, Z.; Vertes, A. J. Phys. Chem. B 1998, 102, 6118–6122.
 (25) Moskovets, E.; Vertes, A. J. Phys. Chem. B 2002, 106, 3301–3306.

vibrational frequency mismatch through the adiabaticity parameter is incorporated in the bottleneck model. Therefore, the increased internal energy of ions generated from DHB and the increased growth rate for the fluence dependence of the internal energy in CHCA are not necessarily in contradiction.

Comparing the fluorescence quantum efficiencies, φ_{qe} , of the three matrixes, however, we have found an interesting alternative explanation. Allwood and Dyer reported the fluorescence spectra, quantum efficiencies, and lifetime of several matrixes both in solution and in solid phase.²⁶ They found that in the solid phase $\varphi_{ae}(DHB) = 0.59$ and $\varphi_{ae}(CHCA) = 0.082$ and for SA fluorescence was below the detection limit. The remarkably high quantum efficiency in DHB opens up a new channel for energy transfer. As the fluorescence spectrum of this matrix covers the 375-550nm range, it overlaps with the long-wavelength tail of the TM absorption spectra. This overlap can be the basis of off-resonance radiative energy transfer between DHB and TMs. It is clear from the significantly lower quantum yields of the other two matrixes that this mode of energy transfer is much less efficient and negligible for CHCA and SA, respectively. When present, radiative energy transfer in MALDI should be considered in competition with nonradiative channels.

CONCLUSIONS

This contribution, we believe, is the first report on internal energy measurements of analyte ions generated in MALDI experiments. We used a set of substituted benzylpyridinium salts as TMs to probe the energy transferred from the matrix to the analyte in the MALDI process. The calculations involved a simplified variant of the survival yield method combined with RRKM theory. We trust that a solid proof is provided for earlier conjectures that the internal energy deposited in the analyte during the MALDI process increases with the laser pulse energy.

(26) Allwood, D. A.; Dyer, P. E., Chem. Phys. 2000, 261, 457-467.

Based on our findings, it is clear that the classification as hot and cold matrixes should be further qualified primarily by accounting for the influence of laser pulse energy. It is quite possible that the assignment of hot and cold reverses as the laser energy changes. Contrary to the currently accepted classification, we consider CHCA, SA, and DHB as cold, intermediate, and hot matrixes, respectively, at the laser pulse energies that induce fragmentation in TMs. Utilizing this understanding, postsource decay MALDI experiments, commonly used for peptide primary structure determination, can be better designed. Comparing fluorescence quantum efficiencies with our internal energy data, the observed correlation points to the need to further explore radiative energy transfer in MALDI.

ACKNOWLEDGMENT

The financial support from National Science Foundation (CHE-9873610) and Department of Energy (DE-FG02-01ER15129) is appreciated. Discussions with Dr. Károly Vékey and László Drahos (Chemical Research Center of the Hungarian Academy of Sciences, Hungary) regarding the applicability of the survival yield method and the nature of the kinetic shift are also acknowledged. We also used their MassKinetics program for comparison purposes. Special thanks are due to Professor John Christie (La Trobe University, Bundoora, Australia) for his help during the development of the RRKM program and to Louise Ye for her help with the calculations.

SUPPORTING INFORMATION AVAILABLE

A listing (vibrational frequencies for the *R*-benzylpyridinium ions based on AM1 calculations). This material is available free of charge via the Internet at http://pubs.acs.org.

Received for review May 21, 2002. Accepted October 17, 2002.

AC020339Z

ľ

Vibrational frequencies for the R-benzyl-pyridinium ions based on AM1 calculations

4C	4F	3MO	4MO	2M -	3M	4M
EG	EG TS	EG 💋 TS	EG TS	EG TS	EG TS	EG TS
17 8	17 10	19 12	15 10	14 12	17 10	17 10
34 26	34 29	23 24	31 28	38 33	27 30	33 - 30
42 41	50 42	57 35	42 42	67 38	28 34	38 33
117 76	131 83	67 65	80 76	106 87	65 37	50 43
166 92	173 95	144 . 84	127 95	137 91	148 84	127 83
227 126	264 141	162 92	162 113	161 98	178 99	170 96
276 247	303 299	189 159	192 142	239 138	207 177	254 137
285 277	311 315	210 197	208 180	287 235	267 203	287 281
333 - 325	333 332	224 207	281 221	304 313	296 279	303 290
335 332	340 335	299 227	302 292	333 332	333 331	333 327
350 362	378 363	333 332	326 332	378 361	371 361	335 332
376 372	424 .430	338 354	333 334	392 397	378 363	368 363
432 382	469 444	375 360	343 352	404 410	383 394	379 382
481 487	511 498	383 371	378 364	431 420	475 484	453 449
546 583	547 583	452 448	449 417	518 487	513 500	515 484
570 597	574 604	499 515	486 - 492	547 557	548 532	547 583
603 608	606 608	540 523	538 526	562 583	557 574	569 599
606 610	611 610	551 545	548 582	579 608	564 585	605 608
631 627	646 639	558 569	572 600	607 609	607 608	607 609
694 665	725 671	569 584	606 604	667 640	636 611	637 615
726 668	776 713	607 608	607 608	724 677	724 659	725 677
794 713	798 778	638 - 612	644 639	734 714	750 713	766 713
799 793	813 792	725 649	724 704	813 737	778 757	795 771
816 812	816 817	754 712	767 719	816 809	816 764	799 786
834 817	839 824	775 749	789 765	820 818	832 817	816 794
865 858	865 858	816 767	806 784	831 826	840 842	836 818
876 875	883 888	820 818	816 817	860 852	863 858	865 859
885 888	891 892	836 828	834 818	868 859	868 887	882 887
891 892	892 899	859 858	865 859	882 892	885 889	888 892
893 900	894 910	866 882	881 891	891 894	892 892	892 900
897 910	924 917	883 887	885 892	902 907	905 916	893 903
924	942 943	892 892	891 895	913 91/	924 917	924 917
998 950	996 950	904 915	892 905	924 926	937 937	936 935
1020 991	1019 985	924 917	924 917	940 936	968 951	938 938
1038 1019	1038 1019	989 952	928 926	965 949	1001 9/1	967 949
1049 1033	1049 1055	1008 988	998 943	1019 960	1013 1006	1003 963
1068 1064	1053 1058	1021 1014	1019 987	1045, 1019	1022 1012	1020 994
1000 1004	1070 1065	1043 1021	1042 1014	1049 1033	1041 1022	1059 1019
1110 1007	1102 1003	1049 1033	1049 1033	1069 1039	1050 1053	1050 1033
1114 1110	1126 1100	1050 1058	1049 1038	1000 1000	1008 1039	1003 1039
IIIV	11202.1100	1003 1047	1002 1043	10/0 1003	10/0 1003	COAL COAL

1127 1180	1173 1157	1068 1062	1068 1064	1074 1073	1072 1069	1070 1066
1174 1202	1176 1167	1070 1065	1070 1065	1083 1086	1095 1095	1110 1097
1180 1246	1186 1177	1093 1093	1098 1092	1129 1097	1126 1098	1127 1108
1203 1328	1212 1202	1103 1097	1117 1097	1175 1157	1136 1157	1171 1157
1226 1344	1232 1219	1127 1102	1127 1113	1177 1167	1174 1161	1179 1167
1248 1374	1254 1282	1161 1157	1168 1155	1186 1175	1178 1167	1184 1184
1249 1391	1257 1329	1176 1167	1174 1157	1219 1202	1205 1190	1207 1200
1256 1437	1264 1374	1178 1173	1190 1167	1227 1221	1227 1201	1229 1205
1305 1490	1392 1410	1198 1180	1193 1189	1236 1231	1234 1232	1232 1218
1395 1525	1399 1431	1214 1200	1215 1202	1247 1238	1240 1237	1237 1224
1397 1560	1407 1447	1226 1218	1224 1219	1254 1268	1255 1259	1255 1262
1439 1578	1440 1520	1229 1223	1229 1222	1260 1297	1256 1296	1256 1293
1456 1595	1516 1521	1241 1237	1240 1234	1269 1320	1263 1332	1262 1346
1573 2807	1568 1574	1255 1270	1256 1279	1294 1344	1294 1356	1294 1375
1576 2822	1574 1579	1257 . 1318	1263 1311	1317 1374	1343 1374	1364 1397
1577 2825	1576 1595	1277 1343	1288 1364	1396 1435	1396 1436	1396 1411
1586 2828	1600 2807	1309 1373	1306 1376	1426 1442	1438 1443	1404 1438
2662 2834	2662 2822	1371 1375	1395 1426	1440 1481	1449 1486	1440 1500
2718 2835	2718 2825	1396 1437	1403 1430	1484 1536	1471 1552	1492 1534
2771 2842	2771 2829	1439 1474	1418 1448	1574 1575	1575 1571	1575 1570
2790 2847	2790 2833	1459 1487	1440 1519	1577 1579	1577 1578	1577 1578
2831 2854	2831 2834	1493 1543	1507 1548	1584 1595	1586 1595	1584 1596
2840 2867	2840 2846	1575, 1575	1575 1574	1599 2730	1599 2735	1596 2719
2848 2873	2848 2850	1576 1578	1577 1579	2658 2738	2663 2749	2664 2745
2850 2808	2853 2853	1586 1595	1582 1596	2714 2806	2719 2808	2719 2808
2851 2822	2855 2867	1596 2764	1591 2763	2735 2821	2737 2822	2734 2822
2860 2823	2861 2873	2664 2765	2664 2769	2747 2823	2751 2824	2751 2823
2864	2866	2719 2809	2719 2807	2765 2824	2767 2828	2768 2823
		2764 2823	2766 2822	2792 2828	2791, 2831	2791 2828
		2766 2825	2767 2823	2831 2833	2832 2833	2831, 2839
		2767 2829	2769 2826	2832 2839	2832 2840	2832 2840
		2790 2829	2792 2829	2841 2845	2841 2841	2841 2848
		2831 2833	2832 2837	2849 2854	2849 2852	2849 2852
		2832, 2840	2833 2839	2850 2855	2852 2854	2854 2854
		2040 2049	2042 2033	2833 280/	2838 2868	2855 2868
		2047 2033	2030 2034	2838 2813	2800 28/4	2862 2873
		2033 2034	2033 2039	2000	2000	280/
		2868 2874	2037 2007	A CONTRACTOR		and the second
		2872	2870			
	Kitainin a	2012	20/0		1993年1月23日	