
to estimate the influence of the variation of A, on p(.K,,F), we 
plotted (RLAr/Rv,c)o.s as a function of uLAr. A straight line was 
obtained 
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TABLE IV: Estimates cf tbe Influence of &Fon Y 
F. V/cm 2000 4000 6000 

Set 1” 
A,. A 140 140 140 
A,F 2.40 x IO-’ 5.6 x IO-’ 8.4 x IO“ 
Y(E,=O.I) 0.23 0.28 0.32 

Set 2 
A,. A 70 70 70 
blF 1.4 x 10-J 2.4 x IO-’ 4.2 X 10“ 
Y(&=O.l) 0.21 0.225 0.25 

set 3 
A,. A 280 290 290 
AIF 5.6 x IO-’ 11.2 x IO“ 16.8 x lo-’ 
Y(&=O.l) 0.28 0.365 0.46 

0 Rest fit of experimental data by distribution h. 

Y = (RLAI/RY,C)o.s = 0.185 ,S- 16A,F (16) 

We do not know how Y(aMI) will behave for small and larrge 
a values, but taking the linear approximation we lind the following 
variations given in Table IV. hlthough the variation of Y with 
A, is not very pronounced, we see that doubling the value of A, 
(set 3) leads to differences between measured values and estimated 
values especially at 6 kV/cm which are outside of the error limits. 
Taking a smaller A, value (set 2) leads to a reduction of Y al- 
though less pronounced. 

Furthermore, it could be seen that A2 depended only weakly on 
N. We are led to conclude that at the LAr density A2 is a function 
of aLAr = A,F/E only. Although we do not know the exact 
dependence of p(&F) on AZ we may assume that aLAr is the 
physical quantity relating the influence of A, and F on p(Ei,F) 
or, in other words, p(E& is a function of aLAr only. In order 

Summarizing, we found that our trajectory model allowed a 
direct calculation of the photoemission yield in LAr with a set 
of parameters, which were derived from mobility data by means 
of Lekner’s model. Variation of A, by more than a factor of 2 
(or I/& leads to discrepancies between the calculated and observed 
yields. This means that the chosen values of A, and A,,. obtained 
from mobility data, are applicable to Tauchert’s experiments and 
that large deviations in these values would lead to internal in- 
consistencies. 
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The method of partial waves in the framework of the fluctuation model has been applied to describe. the density dependence 
of the electron mobility in liquid xenon. The limiting factor in the transport of excess electrons in such systems can be attributed 
to their scattering due to density fluctuations. Instead of the usual Born approximation we handled the scattering problem 
with the more general method of partial waves. This made it possible to work out the average fluctuation size from the 
transport data. Calculations were carried out in the density range (6.7-l 1.5) x IO*’ atoms/cml. Good agreement with 
measured mobiiity curves can be obtained by considering reasonable values for the average fluctuation size. 

1. Introduction 
The relatively high mobility of excess electrons in insulating 

liquids such as some hydrocarbons, argon, krypton, and xenon is 
a fascinating challenge for theoreticians. Just as in the theory 
of liquid metals.’ the main question involves the existence and 
description of the quasifree state in view of the lack of translational 
symmetry in the liquid. Nevertheless insulating liquids differ 
remarkably from liquid metals because of their different band 
structure, mostly due to the presence of a band gap in the insu- 
lators. The mobility of a quasifree electron is governed by the 
scattering mechanisms which limit its drift velocity to a relatively 
small value. The search for possible scattering mechanisms made 
it clear that considering a single atom or molecule as a scattering 
center leads to a limited understanding of the conduction phe- 
nomena. In contrast to this single scatterer approximation, es- 
pecially at higher densities multiple scattering must play an im- 
portant role. 

Electron mobility calculations have been carried out in liquid 
hydrocarbons by Berlin, Nyikos, and Schiller with the fluctuation 
model* and by Basak and Cohen in liquid argon with the de- 
formation potential model.’ Both theories account for the multiple 
scattering of the quasifree electrons in a similar manner, namely, 
using a spherical potential derived from the density fluctuations 

‘Address correspondence IO the aurhor at the Central Research Institute 
for Physics, P.O. Box 49, H- 1525 Budapest, Hungary. 

0022-3654/84/2088-3722$01.50/O 

of the liquid. This potential can be visualized as a perturbation 
of the energy of the bottom of the conduction band, AV,, rather 
than some kind of superposition of interaction potentials from 
individual particles. This perturbation energy can be expanded 
in a series in terms of density fluctuation. Both theories then 
handle the scattering problem with the aid of the Born approx- 
imation and are restricted to the vicinity of the mobility maximum. 

In order to describe many other hydrocarbons, helium, neon, 
and hydrogen another electronic state has to be considered, a 
slowly moving localized state with a mobility comparable to that 
of heavy ions. This state can be understood in terms of the 
Springett, Jortner, and Cohen theory of electronic bubbles! A 
further question arises about the mechanism of formation of such 
localized states in a liquid. Experimental investigation of pico- 
second dynamics of electron transfers indicates two possible stages 
of electron localization, first transition from the quasifree state 
to a bound state and then relaxation of the liquid structure around 
the electron. This second process has been recently investigated 

(1) J. M. Ziman. Phil. Mug., 6. 1013 (1961). 
(2) Yu. A. Berlin. L. Nyikos, and R. Schillcr, J. Chem. Phys., 69, 2401 

(1978). 
(3) S. Basak and M. H. Cohen, Phys. REV. 8. 20. 3404 (1979). 
(4) B. E. Springett. J. Jortner. and M. H. Cohen, J. Chem. Phys.. 48.2720 

(1968). 
(5) G. A. Kcnney-Wallace. G. E. Hall. L. A. Hunt. and K. Sarantidis. /. 

Phys. Chem.. 84, 1145 (1980). 
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by Calef and Wolynes as an application of the Schmoluchow- 
ski-Vlasov theory.6 Not too much is known about the first 
process, i.e., abou! the !cczlization before the reorganization of 
the liquid. 

The main aim of the present paper is to extend the fluctuation 
model beyond the limits posed by the Born approximation. In 
the next section we recall two sufficient conditions for the ap- 
plicability of Born approximation. Then we briefly outline the 
method of partial waves in the framework of the fluctuation model. 
Section 3 is devoted to the discussion of our mobility calculations 
in liquid xenon. The results are compared to those we obtained 
in liquid argon previously. In the Appendix we make a proposal 
for the description of the first step of the electron localization 
mechanism. 

2. Mobility of Quasifree Electrons by the Method of Partial 
waves 

The fluctuation model of the quasifree electrons contains three 
main assumptions. First, the Boltzmann equation can be applied; 
in other words, there has to be enough time between the scattering 
events for the electron to reach a momentum eigenstate. otherwise 
the Kubo formalism should be used. The second assumption lies 
in the fluctuation model itself. In order to create the scattering 
potential as a consequence of density fluctuations, a locai con- 
duction band energy, V,(r). and a local density, n(r), have to be 
defined. The third limitation originates in the application of the 
Born approximation to describe the scattering process. In a 
previous paper’ we analyzed the implications and consequences 
of these constraints in the case of several hydrocarbons and liquid 
argon. It turned out that the strongest bounds are due to the use 
of the Born approximation. It is convenient to express these bounds 
as prescriptions for the influence range of the scattering potential, 
A, either 

(nj2K 

Or 

(n)-‘K-’ 

where K and (n) are the isothermal compressibility and the number 
density of the liquid, respectively. In view of the lack of a sat- 
isfactory theory for the conduction band energy in an insulating 
liquid its density derivative, av,/an, is obtainable preferably by 
the differentiation of measured V,( (n)) curves. These. inequalities 
will obviously hold in the vicinity of the extrema of V,,((n)) 
functions and break down approaching the critical point, where 
the isothermal compressibility has a singularity. 

The parameter A has another meaning which is more easily 
related to a measurable quantity. Because the scattering potential 
is derived from density fluctuations its range is related to the 
average radius of a fluctuation. This in turn can be related to 
the correlation length, f, in the liquid. 

To overcome the limitations created by the Born approximation 
we replaced it with the more general method of partial waves. The 
following derivation is straightforward. 

If V, depends primarily on (n), its fluctuation, AV,(r), can be 
expressed in terms of local density fluctuations, An(r): 

Al’,(r) = 
avo 
anAn + . . . if Irl -< A 

= 0 if Irl > A 

When the first derivative r3Vo/an vanishes, the higher-order terms 
of the expansion dominate the scattering process. The analytical 
solution for elastic scattering on this potential is well-known and 
can be expressed with the phase shifts, 6,: (9) W. B. Streett and L. A. K. Staveley, /. Chem. Pbys., 50,2302 (1969); 

A. L. Gosman. R. D. McCarty. and J. G. Hurst. Nar. Stand. Ref. Dora Ser. 
Natl. Bur. Stand., No. 27. 

(6) D. F. Calcf and P. G. Wolyncs, J. Chem. Phys., 78. 4145 (1983). (IO) W. B. Street, L. S. Sangan. and L A. K. Staveley. J. Chem. Ther- 
(7) A. Vcrtes, /. Cbem. Phys.. 79, 5558 (1983). nmdyn.. 5,633 (1973); F. Thceuwes, and R. J. Bearman. ibid.. 2. 507 (I 970). 
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6, = arctan 
kj,(k*A)j,‘(k.4) - k*j,(kA)j,‘(k*A) 
~-.- 
kj,(k*A)y/(kA) - k*j,‘(k*A)y,(kA) I 

(4) 

where I is the angular momentum quantum number, j, and y, an. 
spherical Bessel functions of the first and second kind, j[ and y; 
are their derivatives with respect to the argument, k = 
(2mE)‘j2/h, and k* = (2m(E - AP’,))‘/2/h. Here E denotes the 
thermal energy of the electrons. 

The total scattering cross section is built up from the contri- 
butions of individual partial waves: 

4s _ 
D = kzFo (21+ 1) sin2 6, (5) _ 

To obtain the mean free path, A, for the electrons we have tc 
average over the fluctuations of different An 

A.-’ = (6) 

where V is the volume of a fluctuation. The form of the expo- 
nential shows clearly that the linearized fluctuation formalism 
was used. This means that this simple version of the theory 
necessarily breaks down approaching the critical point. 

The above-mentioned mean free path still contains an electron 
energy dependence, so the mobiiity can be expressed by averaging 
over the Boltzmann distribution 

112 _ 

S 
xAemX dx 

0 
(7) 

where the notation x = E/kBT was introduced. In the derivation 
of this formula the usual form of quasifrec density of states has 
been invoked. 

The complicated structure of the integrand in eq 6 and 7 makes 
it impossible to derive analytic expressions for the mobility. 
However, the overall structure of both integrals provide convenient 
ways of evaluating them. Equation 6 conforms with the case of 
generalized HermiteGauss quadrature, while eq 7 can be handled 
with the Laguerre-Gauss quadrature. In both cases the five point 
formulas were useds for calculations in liquid xenon. 

The maximal number of partial waves, I,_. which is necessary 
to describe the scattering problem is given by 

[I (I + 1)]“2 3: kA max max 

I max in the present calculations did not exceed 16 (even though 
it caused enough troubles in calculating the higher-order spherical 
Bessel functions in (4)) and the infinite series in eq 5 could be 
truncated there. 

Actual calculations were carried out in liquid argon and xenon, 
where all the necessary input parameters, with the only exception 
of A, were provided by experiments. A was determined by suc- 
cessive approximations. Its value was varied until the model gave 
a mobility equal to the experimental one. 

3. Calculations in Liquid Xenon 
For comparison we present our results for liquid xenon together 

with those obtained previously in liquid argon.’ Three sets of input 
data are needed for the calculations. 

a. Thermodynamic data are needed which include the equation 
of state and the isothermal compressibility of the liquids. Because 
the mobility measurements are usually done along the vapor-liquid 
coexistence line, (p.(n),T) and K values are necessary along this 
line too. up to the critical point. Data for liquid argon are reported 
in ref 9 and for xenon in ref 10. Values for the isothermal 

(8) F. B. Hildebrand: ‘Introduction to Numerical Analysis”, McGraw- 
Hill, New York. 1956, p 325. 
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TABLE I: Input Dab Uwd for Mobil& Calcuhtiom in Liquid 
Xcoon 

00. II, lo-” av,fan, 
T, K 10” cm-) cmr/dyn 1 O-j6 erg cm’ 
154 1.40 13 140 

(D 

-4 
_I! 
Ql 

b 

174 1.32 19 140 
195 1.25 27 125 
204 1.22 32 110 
210 1.20 36 100 
222 1.15 48 30 
255 0.99 143 -80 
275 0.85 563 -110 
286 0.67 2887 -120 

a / I 
I ca 0 1075 1 5.0 142.5 leO0 

TEMPERATURE (IN KELVIN) 

Flgure 1. Logarithm of the electron mobility in liquid argon as a function 
of temperature (0). Simultaneously, the number of possible energy levels 
in an average size fluctuation is displayed (-). There is no decrease in 
the mobility near the critical point and there is no increase in the number 
of energy levels either. 

XENON ’ Q 

Jo ,o;,5ai y 
TEMPERATURE (IN KELVIN) 

Figure 3. The average fluctuation size estimated from the present model 
in liquid argon (0) as a function of temperature. The long-range cot- 
relation length, [, from eq 9 is also shown (solid line). The shaded region 
emphasizes where the Born approximation does not prevail. (Calculated 
on the basis of eq 1 and 2.) 

0 XENON 

x / 
I I a 

150.0 1e7.5 225.0 ze25 306.0 

TEMPERATURE (IN KELVIN) 

Figure 2. In liquid xenon, there is a dramatic drop in the mobility 
approaching the critical temperature (0) and the number of energy levels 
in an average size fluctuation (-) goes up at the same time. 

compressibility in liquid xenon closer to the critical point can be 
found in ref 11. 

b. V. measurements must be as a function of density. For liquid 
argon Allen and Schmidt published the first density-dependent 
V. measurements.‘* Data for fluid xenon and krypton appeared 
about the same time from Reininger, Asaf, and Steinberger.r3 
Because of the experimental difficulties in V. measurements the 
published values usually contain 5 X 10-t” erg uncertainty which, 
in consequence, produces about 50% error in the derivative. 

c. Zero field mobility measurements must be as a function of 
temperature and pressure. In fluid argon Jahrke, Meyer, and 
Rice” made experiments over an extensive range of temperature 
and pressure under isobaric and isothermal conditions. Their 
measurements covered the vapor-liquid coexistence line under the 
critical point as well as its upward continuation. Huang and 

(II) J. Zollwe~. G. Hawkins, and G. B. Benulek. fhys. Rev. Left.. 27, 

Q t 
n. oljo.o 187.5 2i5.0 

TEMPERATURE (IN KEL;& 
3 

F’igure 4. Average fluctuation size in liquid xenon as a function of 
temperature (0) together with the long-range correlation length calcu- 
lated from eq 9 (solid !ine). Our theory seems to break down in the 
vicinity of the critical point. The shaded regions represent the constraints 
produced by the Born approximation. 

Freeman’s measured the mobility of excess electrons in liquid 
xenon along the vapor-liquid coexistence line. 

The input data used for the calculations in liquid xenon are 
summarized in Table I. In Figure 1 the logarithm of electron 

lle‘2 (1971). - 
(12) A. 0. Allen and W. F. Schmidt, 2. Nururjorsch. A. 37, 316 (1982). 
(13) R. Reininger. U. Asaf, and 1. T. Steinberger, Clrcm. Phys. I.&r.. 90, 

287 (1982). 
(14) J. A. Jahnke, L. Meyer, and S. A. Rice, fhys. Rev. A, 3,734 (1971). (15) S. S. S. Huang and G. R. Freeman, j. Chem. Phys., 68, 1355 (1978). 
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mobility in liquid argon is displayed as a function of temperature. The only deviation from the expected monotonic trend in the 
Inspecting :he curve makes it clear that no electron localization average fluctuation size can be observed in liquid xenon very near 
occurs even in the neighborhood of the critical point. In com- to the critical temperature. This discrepancy is either due to the 
prison in Figure 2 a different behavior can be observed for liquid failure of linearized relationships invoked at several points of the 
xenon. The mobility of excess electrons drops two orders of theory or a consequence of electron localization. 
magnitude toward the critical point. 

The basic question is whether this decrease is due to an in- 
creasing localization of the electrons or if features inherent in the 
quasifree state can explain this dramatic change. As mentioned 
earlier the Born approximation is not applicable in the vicinity 
of the critical point. The constraints stated by eq 1 and 2 are 
represented in Figure 3 for argon and Figure 4 for xenon. The 
shaded domains show where the condition given in eq 1 or 2 is 
not fulfilled. It is clear that. relatively far from the critical point, 
the Born approximation in fact breaks down, independent of the 
(so far unknown) quantity A. 

Appendix. The First Step of Electron Localization in 
Nonpolar Liquids 

Acknowledgment. The author is indebted to Dr. 1. Carmichael 
for providing skillful computer routines to evaluate the spherical 
Bessel functions and for reading the manuscript. The research 
described here was supported by the Office of Basic Energy 
Sciences of the U.S. Department of Energy. This is Document 
No. NDRL-2477 from the Notre Dame Radiation Laboratory. 

In the relevant temperature interval mobility calculations were 
carried out with the method of partial waves in both liquids. The 
parameter A was determined by successive approximations, 
matching the calculated mobility to the experimental one. In 
accordance with our expectations its value increases as the tem- 
perature approaches the critical temperature, Tc. This is rea- 
sonable if one takes into account the fact that the size of fluctuation 
diverges at the critical point. As a possible measure of fluctuation 
size one can take the long-range correlation length, .$ This length 
is known to diverge at the critical point as 

E = Eel 1 - T/ TcI-’ 

The overall thermodynamics of electron localization in nonpolar 
liquids was investigated by Springett. Jortner, and Cohen.’ They 
established a stability criterion for the localized state in terms of 
the formation of : so-called electronic bubble. Their theory 
predicts whether a rc laxed localized state can exist at all; however, 
nothing is said about the manner and possibility of their formation. 

On the basis of picosecond electron transfer experiments5 the 
localization of quasifree electrons is thought to consist of two 
consecutive steps. The first step is a temporary localization of 
an electron in a shallow trap formed by a fluctuation in the liquid, 
while the second one is the relaxation of the molecules around 
the electron resulting in a deepening of the trap. 

The most recent description of the second step was given by 

Light scattering experiments in liquid xenon gave to = 1.18 f 
0.2 A and Y = 0.57 f 0.05 for the critical exponent.t6 This 
function together with our previously determined A values are 
plotted in Figures 3 and 4. They show an overall similar trend 

_ except for the last point in the case of xenon. 
The large discrepancy between the magnitude of A and [ can 

mean one of two things. It either points out some deficiency of 
the theoretical treatment or appears as a consequence of the 
different objects the fluctuations scatter. In other words, one can 
say that A is different from .$ because A characterizes an average 
fluctuation size which scatters most of thermal electrons while 
t is obtained from light scattering. 

A major deviation from the present theory appears at 286 K 
in xenon. At this point if the exbzcted trend of the average 
fluctuation size was maintained, the theory would largely over- 
estimate the electron mobility. This can mean one of two things. 
Either the whole present approach is meaningless in this region 
because of the linearity suppositions used in the solution of the 
Boltzmann equation and also involved in the fluctuation model 
or, if this is not the case, some new electronic state should be taken 
into account. The possibility of formation of localized states and 
the stability of electronic bubbles in liquid xenon will be examined 
in the Appendix. 

. 

Calef and Wolynes.6 They treated the relaxation process by 
considering the structured nature of the liquid during the charge 
solvation. Use was made of the Schmoluchowski-Vlasov equation 
to find the time dependence of the trap depth around an electron. 
Their results can be brought into good accordance with the 
sporadic experimental findings in this field. 

No attempt has been made so far to the best of our knowledge 
to deal with the first step, i.e., with electron localization in a 
shallow trap formed by a fluctuation. In the following we propose 
a simple semiquantitative treatment for a necessary condition in 
shallow trap formation. 

If we made use of the basic thermodynamic relationship for 
density fluctuations 

(An*) 3kBTK 
-=- 

(n)* JA% 

and eq 3 for the resulting potential, the average trap depth in the 
absence of electrons can be expressed in the following way: 

(AV,) = f(3k,Tx/A%)l/*z(n) (11) 

The number of I = 0 energy levels, I%‘,, in a spherical potential 
well can be expressed by” 

4. Summary 

Our primary goal was to extend the fluctuation model of 
quasifree electron mobility beyond the limitations of the Born 
approximation usually employed. First two independent satis- 
factory criteria were established for the applicability of the Born 
approximation. Examining the case of liquid argon and xenon 
shows that considerably below the critical temperature the Born 
approximation is already inappropriate. 

The method of partial waves was introduced to overcome this 
difficulty. aV,/dn, the usual fitting parameter, has been replaced 
by values derived from experimental Vo( (n)) curves. Our model, 
however, introduces a new fitting parameter, A, the average size 
of fluctuations or. in another interpretation, the influence range 
of the scattering potential. This parameter was determined by 
successive approximations to give agreement between the measured 
and calculated mobility. A as a function of temperature shows 
a similar shape to the long-range correlation length: however, its 
value is much larger. 

N, = INT [p/x + 1/*] (12) 

where p = (2mAVo)‘12A/h and INT denotes the integer part 
function. The detailed form of p 

p = (3kBT/*)1/4(laVo/anl(n)m,)‘/Z1(‘/4A’/4/~ (13) 

shows that the number of the available energy levels in the vicinity 
of the critical point will diverge as (KA)‘/~. 

Using t instead of A we evaluated eq I2 for liquid argon and 
xenon. The results are displayed in Figures 1 and 2. It is re- 
markable that in argon even in the neighborhood of the critical 
temperature there is no available I = 0 energy level in an average 
fluctuation. This may be the reason for the conservation of the 
quasifree s!ate throughout the whole investigated temperature 
range. In liquid xenon, however, already at T = 275.2 K an energy 
level appears in the average fluctuation promoting the formation 
of the localized state. As we have seen before at T = 275.2 K 

(16) M. Giglio and G. B. Bencdck. Phys. Reu. tiff., 23. II45 (1969). 
(17) L. D. Landau and E. M. Lifshitz, “Quantum Mechanics”, Pergamon 

Press, Londcn. 1958, p I IS. 
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the mobility can be explained with the quasifree state alone but 
at T = 285.8 K localization should be considered. 

Electronic bubble stabi!i!y calculations in liquid xenon show 
that there are no stable bubbles in the system below 275.2 K and 
stable bubbles exist at higher temperatures. The bubble radii at 
275.2 and 285.8 K are 5.3 and 6.6 A, respectively. There is an 
interesting coincidence between the appearance of stable bubbles 
at 275.2 K and the formation of energy levels in Vo fluctuations. 
This is of course only an accidental agreement since the theory 

in ref 4 establishes the equilibrium criteria for the existence of 
electronic bubbles while our contribution concerns the first step 
of their formation kinetic. 

A detailed description of the first stage of electron localization 
should provide the transition probabilities between. the quasifree 
and localized states as well as an understanding of the energy 
transfer during the process. 

Registry No. Xenon. 7440-63-3. 

Deuterated Liquid Ammonia and ‘Lk4ND3 Solution. A Neutron Scattering Investigation 

P. Cbieux* 

Insfitut Laue-Langevin, 

and H. Bertagnolli 

156X. 38042 Grenoble Cedex, France 

Institut fiir Physikalische Chemie der Universitdt. Wirburg, Germany (Received: August 25, 1983; 
In Final Form: March 14. 1984) 

One presents the structure factor and the radial distribution function of liquid ammonia at +22 and -65 “C as obtained 
from neutron diffraction measurements. The same results are given for a ‘Li*4ND, solution at -57 “C. These data are 
cornoared and discussed. The effect of dilution on the structure of the lithium solution is also shown. There is definite evidence 
for an ordering due to the solvated lithium ion. 

Considerable progress has been made in recent years in the 
determination of the structure of molecular liquids. In particular, 
the combination of X-ray scattering and neutron scattering on 
isotopically substituted samples has enabled us to precisely de- 
termine the intramolecular parameters in the liquid state and the 
distribution of the intermolecular positions and to obtain some 
information on the angular correlation functions.’ We shall in 
this paper present and discuss some results of a neutron scattering 
research program devoted to liquid ammonia as well as to con- 
centrated metal-ammonia solutions.’ A detailed analysis of these 
experiments became recently possible due to the progress’ in the 
correction of the strong inelasticity effect presented by light atom 
containing molecules. This work, which does not, for the time 
being, take full advantage of the isotopic substitution technique’ 
(such as would be possible for t4N/tsN, H/D, or 6Li/7Li, etc.), 
provides, however, some insight on the local order of these systems. 
After a few words on the experimental aspects, we shall focus 
successively on the intramolecular parameters, the intermolecular 
ordering, and the hydrogen bonding of pure liquid ammonia and 
then compare it to the ‘Li-4ND, solution where the effects of the 
solvation shell will be emphasized. 

Experimental Section 

A very large series of experiments has been performed on pure 
liquid ND, (as well as on a ‘Li(NDs), solution) in order to check 

(I) (a) tl. Bertagnolli. P. Chicux. and M. D. Zcidlcr, Mol. Phys., 32. 759 
(1976). (b) H. Bertagnolli and M. D. Zcidler. ibid., 35. ! 17 (1978). (c) H. 
Bcrtagnolli. D. 0. Leicht. M. D. Zcidler. and P. Chieux. ibid., 36. 1769 
(1978). (d) H. Bertagnolli and P. Chicux, Mol. Phys., submitted for publi- 
calion. 

(2) A report on the more technical aspects of the various corrections tstcd 
on this system shall be published, as well as data on different metal-ammonia 
solutionk 

(3) See for example (a) J. G. Powlcs. Ado. Phys.. 22, 1 (1973); (b) J. G. 
Powla, Mol. Phys.. 32.301.323 (1976): 36.1161 (1978): (c) J. R. D. Copley, 
‘Physics of Modern Materials”. IAEA. Vienna, 1980, p 613: (d) H. Bcrtag 
nolli and P. Chieux. Mol. Phys.. submitted for publication. 

(4) See for example (a) G. W. Neilson and J. E. Endcrby. Proc. R. Sot. 
London Ser. A 390. 353-71 (1983); (b) A. H. Nartcn. W. E. Thicsscn, and 
L. Blum. Science, 217. 1033 (1982); (c) see also rcf 1. 
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the incident neutron energy effect on the inelasticity correction 
(X = IO, 2.53, 0.7, 0.5, and 0.35 A (at the I.L.L.), 1.33 A (at 
Saclay). and down to 0.2 A (on the Harwell Linac machine)). 
Various container materials such as vanadium or quartz and 
sample cell diameters from 7 to I5 mm have also been investigated. 
We shall, however, not report here on studies related to various 
technical aspects of the data analysis or to detailed comparisons 
between different neutron scattering machines and sample en- 
vironments.2 

The present paper refers only to experiments performed on the 
D4 liquid s ctrometer, at the I.L.L. (Grenoble), at wavelengths 
X = 0.696 s” (Zn 002) and X = 0.504 A (Cu 220), with filtering 
of the X/2 neutrons. The data were collected every 0.2O (26) step, 
with a single ‘He detector (IO cm long, S-bar 3He pressure) at 
a sample-to-detector distance of I .50 m. The setting corresponds 
to a resolution of AQ/Q = 0.04 at a scattering angle equal to 
the monochromator takeoff angle of 16”. The counting time was 
such as to obtain a statistical accuracy of 1% or better. The room 
temperature ammonia sample (99.75% enriched ND, (CEA, 
Saclay. France)), was contained in a l5-mm-dia:neter. O.l5- 
mm-thick vanadium container. The ‘Li-ammonia sample (‘Li 
from Oak Ridge) prepared in Prof. Lepoutre’s laboratory (Lille) 
with a 19.4 MPM composition, determined by gravimetry of the 
lithium and gas volumetry of the ammonia, was contained in a 
8-mm-i.d., IO-mm-o.d. sealed quartz cell. An identical quartz 
cell was used for the low-temperature ammonia experiment and 
for the other lithium-ammonia concentrations. In all cases, the 
sample height illuminated by the neutron beam was 5 cm. 

The low-temperature ammonia sample and the Li-ammonia 
solutions were rcfrigcrated at the top and bottom ends by two 
copper blocks maintained at a regulated temperature (iO.2 “C). 
the cold source being ensured by a solid connection to a liquid 
nitrogen bath. Thermal gradients along the sample were reduced 
by an aluminum heat shield of a large diameter (47 cm) with 
openings for the incoming and scattered neutron beam. They were 
estimated to 2-3’ at most. The tcmpcraturc was read from a 
platinum thermometer placed near the sample. 

In all experiments the sample environment (such as a 50-cm- 
diameter vacuum vessel around the sample) was designed to 
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