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Mobility of charge cnrriers in certain liquid systems is controlled by temporal fluctuations in local 
conductivity. Fast transport proceeds along high mobility regions similarly to traditional percolarion with the 
difference that these regions form and fade away with fluctuations. By making use of the idea of waiting time 
distribution of continuous time random walk, formulas for relative mobility as a function of the expectation 
value of proportion of high mobility regions are suggested. The results compare reasonably well with 
experimental data. Under the experimental conditions given quasipercolation theory and the effective medium 
theory of traditional percolation do not differ too much numerically. For site percolation threshold in 
nonfluctuating systems the expression [(e - I)/ez]“’ is suggested. where e is the base of natural logarithm and 
I is the coordination number. 

INTRODUCTION 

Percolation theory has been developed for the descrip- 
tion of transport processes in spatially disordered sys- 
tems like random networks, amorphous solids, or com- 
posite materials. ‘-’ In order to visualize the basic 
problem let us imagine a network of ohmic resistors with 
randomly distributed missing elements or a random mix- 
ture of conducting and isulating balls. Current can flow 
across such a system only if the proportion of conduct- 
ing elements is high enough to form at least one con- 
tiguous channel along which the charge carriers can per- 
vade the entire (infinitely large) system. The most 
obvious common feature of all such models is the exis- 
tence of a nonzero lower limit of the proportion of con- 
ducting elements below which no current can flow. This 
limit is called the percolation threshold, 

Percolation theory deals with spatial fluctuations only, 
all the properties and parameters being regarded as in- 
dependent of time. Hence it was an important intuitive 
step forward that was made by Kestner and Jortnerfi 
who applied one of the descriptions of percolation, effec- 
tive medium theory, ’ to charge transport in hydrocarbon 
liquids. Here, conducting and insulating regions were 
thought to form due to thermodynamic fluctuations, this 
meaning that a conducting region can turn into an insulat- 
ing one and rice WYSU. Thus, local conductivity changes 
with time at any given site. 

Although having proposed an alternative description 
of charge mobility in liquid hydrocarbons,’ we made use 
of these ideas in the understanding of electron and hole 
mobility in certain liquid mixtures.’ In these mixtures 
the charge carriers are in a high-mobility state only if 
they are surrounded exclusively by the molecules of one 
of the components or. in brief, if they are in a pure sub- 
system. Examples of such mixtures will be given in a 
later section. 

Whatever the chemical nature of the mixture, pure 

“Pcrnlanent address. 

conducting subsystems are brought about by temporal 
fluctuations of concentration. While our attempt to de- 
scribe mobility as a function of concentration by making 
use of effective medium theory seemed to be successful 
for a number of mixtures, ’ the conceptual problem of 
how to reconcile percolation with temporal fluctuations 
remained, though tacitly, unresolved. 

The aim of the present paper is to give a simple de- 
scription of charge carrier motion governed by temporal 
fluctuations in conductivity. To this end some notions of 
continuous time random walk theory’0-‘2 will be made 
use of. Whereas classical random walk is characterized 
by a constant waiting time between two subsequent jumps 
this theory applies a continuous distribution of waiting 
times, the function il(f)df being the probability of a jump 
taking place between t and t + df. 

A two-state model will be adopted, i.e., a fluctuating 
subsystem will be thought to be either in the conducting 
or in the insulating state. The results will be compared 
both with experimental data and with effective medium 
theory. By developing an analogy between the present 
treatment and percolation in nonfluctuating systems an 
expression for percolation threshold will be proposed. 

MOBILITY IN FLUCTUATING SYSTEMS 

Let the macroscopic system be divided into subsys- 
tems. Perennial fluctuations change their properties 
in such a manner that they are either in the conducting 
or in the insulating state. A charge carrier can pro- 
gress if both the subsystem in which it resides and one 
of its neighbors are conducting. If either or both of the 
subsystems in question are insulating the carrier is 
trapped. The existence of more than two adjacent sub- 
systems is disregarded. 

,Let the average waiting time in a conducting subsys- 
tem be denoted by r,,. If the system consists exclusively 
of conducting subsystems and the diffusivity has no dis- 
persion the waiting time distribution is exponential, 
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$0(t) = 7;’ exp(- t/r,) . (1) 

In this case Einstein’s expression holds for any fre- 
quency lo 

Do= L2/2ro , (2) 

where L is the mean displacement for a single jump. 

On the average a charge carrier, moving in a system 
of fluctuating conductivity, is imagined to make an at- 
tempt to leave the subsystem in which it resides at each 
7. instant. Let W denote the probability of the first at- 
tempt to be successful. The probability of a jump taking 
place between t and t + ~~ is given by 

e(t) = (1 - W)L”OW . (3) 

The quotient t/r, equals the average number of unsuc- 
cessful attempts (cf. Chandrasekhari3). The series 
q(t) can be replaced by the continuous function 

#(t) = T-’ t?Xp(- t/T) , (4) 

where I is defined as 

T = - To/h(l - W) . (5) 

Here 4(t) is a waiting time distribution function which, 
if integrated between t and t + To, renders Q(t) as given 
by Eq. (3). 

The integration of G(t) between 0 and ~~ should yield 
the probability of the first jump being successful. In- 
tegrating $(l) one indeed finds 

i 
70 

ti(t)dt = w 
0 

I o’“~o(t)dl=(e-l)/e=~~0.6321 . (7) 

Thus, n is the probability of a jump taking place between 
0 and To in a system which consists of conducting sub- 
systems only. 

(6) 
Assuming an equilibrium to prevail the formation and 

disappearance probability of a certain state must be 
equal, thus the equation 

CW,, = (1 - C)W,, (11) 

must hold. Since only two states are available a simple 
relationship prevails: 

w,, +wc,=w,,+w,,=l . (12) 

[For Eqs. (11) and (12), cf. Ref. 13.1 

By combining Eqs. (lo)-(12) one finds 

w=r@ . (13) 

Inserting Eq. (13) into Eq. (5) one obtains the concen- 
tration dependent time constant of the waiting time dis- 
tribution function as 

In view of G(t) being a simple exponential the diffusion 
constant in a fluctuating system is given by Einstein’s 
expression for any frequency 

D=L2/i?7 . (8) 

The task is now to determine W through the properties 
of the system. A limiting value can immediately be 
established. Let the expectation value of volume frac- 
tion of conducting subsystems be denoted by C (for the 
sake of brevity C will be called conducting concentration 
from here on). The relationship 

W(C=l)=n (9) 

must hold in view of Eqs. (6) and (7) whatever the func- 
tional form of W(C). 

and 

Two different cases will be discussed: (a) (Mimifed 
flrtctunlion: the presence of a charge carrier does not 
influence the fluctuation of the subsystem by which it is 
withheld. This is the case when interaction between 
charge carrier and subsystem is weak. (b) Limited 
fluctuation: a subsystem which has obtained a carrier 
by having become conducting cannot turn again into the 
insulating state. This happens if th,? interaction between 
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charge carrier and environment is strong enough to sta- 
bilize the conducting state. 

Unlimited fluctuation 

The charge carrier on the average investigates the 
state of the subsystem at intervals TV. Let W,, and W,, 
denote the respective probabilities of finding a conduct- 
ing or an insulating subsystem in the same state by two 
subsequent investigations while W,, and W,, denote the 
respective probabilities of a conducting subsystem to be 
found insulating or an insulating subsystem to be found 
conducting from one attempt to the next. 

The charge carrier which landed in a subsystem at 
moment 1 can move on at the first attempt if both the 
subsystem in which it resides and its neighbor are con- 
ducting at t + TO. With unlimited fluctuation present this 
can happen in four different ways: (i) both subsystems 
are conducting at f and t+rO; (ii) the first one is conduct- 
ing at t and t + r. while the second one is insulating at t 
and conducting at t + TV; (iii) the first one is insulating 
at t and conducting at t + TV, while the second one is con- 
ducting at t and t + ro; and (iv) both are insulating at t 
and conducting at t + TV. 

Hence, W can be written as 

w=w,,=77[c~w~c+2c(1 -c)w,,w,,+(l -c)2w;,], (10) 

where the subscript f(i refers to the mode of fluctuation. 
This expression also complies with Eq. (9). 

T uf = - r&ml - nC2) , 

and Eqs. (2), (6), and (14) yield 

(14) 

D,f/Do=~uf/~o= - ln(1 -UC*) . (15) 

Here put and p. denote charge carrier mobilities at con- 
ducting concentrations C and 1, respectively. The pro- 
portionality between D and ~1 is assumed to prevail. The 
function Eq. (15) is plotted in Fig. 1. 

Until now it was assumed that put = 0 if C = 0, that is, 
if the conducting concentration is zero no current can 
flow. If this is not the case and a nonzero mobility I_I, 
can be observed also across insulating subsystems, Eq. 
(15) must be modified to become 

~u,/~o=-(1-r)ln(l-~C2)+~, (15a) 
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FIG. . Relative mobility as a function of C for unlimited 
(lower curve) and limited (upper curve) fluctuations, Eqs. (15) 
and (171, respectively. Dotted line: effective medium theory. 
For all cases, Y= 0. 

where T= p,/pO. 

Limited fluctuation 

The subsystem in which the charge carrier landed at 
moment I is in the conducting state with certainty at 
( + To. Thus W depends only on the probability of the 
neighboring subsystem being conducted at (+T~. By 
recalling Eqs. (9), (11). and (12) this can be expressed 
as 

W=W,,=n[CW,,+(I-C)W,,]=nC, (1’3 

where the subscript If refers to limited fluctuation. 
Combining Eqs. (2), -(5), (8), and (16) one finds 

D,,/DO=~r,/~o=-ln(l -77C) , (17) 

if p =0 at C =0 and similarly to Eq. (15a). if pim+ 0 

j.i,,/po=-(l -r)In(I -nC) +Y . (174 

The graph of Eq. (17) is given in Fig. 1. 

COMPARISON WITH EXPERIMENTS AND WITH 
EFFECTIVE MEDIUM THEORY 

Charge migration in certain liquid mixtures depends 
greatly on concentration fluctuations. Three such sys- 
tems, in which radiation-produced electrons or holes 
move faster than conventional ions. were discussed pre- 
viously in terms of effective medium theory.’ Now we 
reexamine these experimental results. 

Similarly to Ref. 9. there are two ways to compute C 
from the mole fraction of the component enhancing 
charge motion, x. If the charge is localized and hence 
interacts with one single subsystem only, C is given as 

C=CS=X”) (18) 

where ?I is the number of molecules with which the 
charge carrier is in direct interaction, this being taken 

for the size of the subsystem. If, however, the charge 
is delocalized and interacts with a barge number of sub- 
systems the entropy of mixing AS,,, defines C by 

C = C, = x exp(- AS,/k) 

=xexp(n[xlnx+(I -x)ln(l -n)]) , (19) 

Transdecaline-cyclo-hexane 

A trans-decaline’ positive ion can donate its charge 
to a neighboring trans-decaline but not to a cycle-hexane 
molecule. l4 The positive charge interacts with one 
molecule only, hence n = 1. The interaction energy being 
the ionization potential of the molecule, the interaction 
between charge carrier and molecule must be regarded 
as strong thus the case of limited fluctuation, Eq. (l?a), 
is expected to prevail. The charge carrier is localized 
which demands the use of Eq. (18). Experimental data 
and the quasipercolation theory curve are given in Fig. 
2. For comparison, the effective medium theory curve’ 
is also plotted. The agreement between experiment and 
both theories is reasonable. 

Hexafluorobenzene-benzene 

Radiation-produced negative charge carriers in pure 
hexafluorobenzene have a mobility some 50 times higher 
than that of ordinary ions. The addition of an inert di- 
luent, e. g., benzene, reduces the mobility drastically.‘5 
There are strong indications that the charge carrier is 
an electron delocalized over a number of CGF, mole- 
cules.’ Charge motion consists in the migration of an 
electron from a group of CGF, molecules to a similar 
neighboring group. With a second, inert component 
present, concentration fiuctuations procure the forma- 
tion of groups consisting exclusively of C,F,, i.e., of 
pure subsystems. The electron was shown to be bound 

- R : *:. _:* 
.AC :;;/ -I 

0 ,2 .4 .6 ‘8 ‘TD 

FIG. 2. Relative mobility in trcnls-decaline-cycle-hexane mix- 
tures (Ref. 14) as a function of the mole fraction of tvcnrs-deca- 
line, xTD. - present, using Eqs. (17a) and (18); .**** 
Ref. 9; both with n = 1 and r =O. 09. 
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to the group by an energy of some 3 eV, thus the energy 
per molecule is much higher than kT if the number of 
molecules in a group is not larger than 20. These facts 
compel one to use the limited fluctuation expression and 
the C,(X) function, Eqs. (17a) and (18). 

The curves calculated by the present quasipercolation 
method and by the effective medium theory are plotted 
in Fig. 3, together with experimental data. The agree- 
ment seems to be good; it should be noted, however, that 
quasipercolation was computed with n = 15, whereas in 
the effective medium treatment n = 12 was used. At 
present no experiment can tell which of the two figures 
is the more realistic one nor can we comment upon the 
reason of this disagreement. 

n-hexane-ethanol 

Electron mobility in n-hexane is by some two orders 
of magnitude higher than that in ethanol. Excess elec- 
trons in saturated liquid hydrocarbons are partially lo- 
calized, i.e., a fraction P of them is localized, (1 -P) 
is quasifree. With mobilities for the localized and 
quasifree states, pL and J.L~, respectively, the experi- 
mental mobility is given a&i6 

The presence of ethanol slows down electron motion be- 
cause either of the two states can form in pure subsys- 
tems only. The lower limit of mobility in the mixtures 
equals that measured in pure ethanol and is denoted by 

UP!* 

In order to apply quasipercolation to the present case 
one has to recall the physical differences between local- 
ized and quasifree states. The interaction between a 
localized electron and the environment is strong and is 

.6 
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FIG. 4. Relative mobility in n-hexane-ethanol mixtures” as 
a function of the mole fraction of n-hcxane, ,vhcX. - present, 
using Eq. (21); *** Ref. 9: both with aL=l, ?2,=25, 7 
=0.022, 7,=0.05ti, 7,=290.3, andP=0.99ti7 (cf. Ref. I(i). 

limited to one molecule only, * hence formulas (17a) and 
(18) with n=nL =I refer to this state. A quasifree elec- 
tron, however, being delocalized interacts with a large 
number of molecules and the interaction is weak, hence 
Eqs. (15a) and (19) must be used with ?I =?I~ which is to 
be determined by parameter fitting. The concentration 
dependent mobility in the mixture is of the form 

J.I/JL~= -P(Y~ -r) ln(l -nC,) 

- (1 -P)(r)7 -Y)ln(l -nC2,) +Y , 

where Y=IJ,/P~; Y~=cI~/cI~, and Y,=cI~/P~. 

(21) 

The curves calculated by Eq. (21) and by the effective 
medium theory’ together with experimental points” are 
given in Fig. 4. The agreement between both theories 
and experiment seems to be acceptable. 

CONCLUDING REMARKS 

A theoretical description was developed and a word 
coined for charge transport through media in which local 
conductivity fluctuates with time. Quasipercolation dif- 
fers from traditional percolation in the nonexistence of 
any percolation threshold. This marked difference, 
however, is blurred if charge carriers have a finite 
mobility even in insulating subsystems. In that case, 
effective medium theory and quasipercolation coincide 
reasonably when using the same parameters and both of 
them describe the experiments adequately. This shows 
how good the intuitive idea of Kestner and Jortner’ was. 

FIG. 3. Relative mobility in hexafluorobenzene-benzene mix- 
tures (Ref. 15) as a function of the mole fraction of hexafluoro- 
benzene, xQF6. - present, using Eqs. (1711) and (18) with 
n=‘16 and r=0.025; - - - - present, with n = 12 and 7= 0.025; 
*** Ref. 9 withn =12 and 7=0.025. 

Mobility as calculated by the above treatment does not 
have any dispersion. This is so because fluctuations 
were regarded to be extremely short lived, a subsystem 
was thought to change its state many a time during the 
passage of a charge carrier. This enabled us to use 
equilibrium assumptions on fluctuations which, in turn, 
made W independent of time. It must be remembered, 
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however, that this simplification is due to an approxi- 
mation which might break down at mobilities much higher 
or fluctuations much slower than those which prevail in 
the systems treated now, 

A more general treatment must involve time-dependent 
fluctuations and must make W depend on time. Such a 
calculation might predict a frequency dependence of 
mobility, an effect not yet observed, 

Let us consider a contiguous array of subsystems and 
evaluate the probability Q(k) that no conducting pair 
can be found from the first through the kth wbsystem 
and the (k + 1)th is conducting and has a conducting neigh- 
bor. Similarly to formulas of quasipercolation. q(k) can 
be expressed as 

Q(k)= (1 -P)bP=(l -zCZ)‘zC2 . (A2) 

This can be replaced by the continuous function G(x) as 
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where x is a length measured along the array, [XI/L 
=2k. L is the linear dimension of a subsystem, and K 

is defined as 

K = - 2L/ln(l - Zd) . (A4) 

The integration of q(w) between 2kL and 2(k + 1)L results 
in q(k) in complete analogy with Eqs. (3) and (4). 

The expectation value of the length between two con- 
ducting pairs can be evaluated as 

APPENDIX: PERCOLATION THRESHOLDS IN 
NONFLUCTUATING SYSTEMS 

In this appendix, a simple method, analogous in spirit 
to the foregoing discussion of quasipercolation, is sug- 
gested for the estimation of percolation thresholds in 
space structures of different coordination numbers. 

Now we express the percolation threshold in terms of K. 

Finite subsystems and the limiting case L- 0 are treated 
separately. 

It is generally held, ’ though, to the best of our knowl- 
edge it has been strictly proven for the infinite square 
lattice only, ” that if the proportion of conducting sub- 
systems is equal to or higher than the threshold there 
is only one infinitely large cluster in the system. It is 
as if a backbone of conducting subsystems were formed. 

Subsystems qf.finite dimensions. The length of a pair 
of subsystems is 2L. If K> 2L the array is insulating 
since this inequality means that conducting pairs are 
held apart by insulating subsystems. The array becomes 
conductive, when the relationship K = 2L holds, i.e., 
when all the conducting pairs coalesce, This defines 
the percolation threshold C, in view of Eq. (A4) as 

Let the structure of the backbone be simplified as an 
array of conducting subsystems which has the form of a 
space curve without branching or loops, The probability 
of finding pairs of conducting subsystems along any such 
space curve can be determined. We regard the concen- 
tration where this probability diverges, i.e., where an 
epidemic growth of conducting pairs sets in, as the per- 
colation threshold. 

- In(l -zCf) = 1 . (A61 

Infinitely small subsystems. The number of pairs of 
subsystems per unit length is (2L)-‘, whereas the number 
of conductive pairs is K-‘. Hence, the probability of a 
pair being conductive is XL/K. The probability of all the 
pairs of subsystems per unit length being conductive is 
(2L/K)1’2L. Let the limit L- 0 be investigated by con- 
sidering also Eq. (A4), 

The idea is somewhat resemblant of that of Sykes and 
Essamig who defined threshold by the concentration 
where functions of the mean number of clusters exhibit 
singularities. The reduction of the backbone to a simple 
space curve and the definition of the threshold in terms 
of conducting pairs along a space curve are rather ar- 
bitrary approximations the validity of which we have 
failed n priori to justify. 

(0 if -ln(l -zC2)<1, (A7) 
~~[-ln(l-zC2)]*‘2L=’ 

_ (1 if - ln(1 -zC2) = 1 . (A81 

Let C now denote the volume fraction of conducting 
subsystems in a rigid system and z the coordination 
number. The probability of finding two adjacent conduct- 
ing subsystems Pm can be given as 

Pm= C[ I- (1 - C)l] = zC2 + higher order terms. (Al) 

The exclusion of branching means that the possibility of 
more than two adjacent conducting subsystems is ex- 
cluded. We try to express this limitation by disregard- 
ing higher order terms in Eq. (Al), i.e., we write the 
probability as P = a?. 

There is a sudden change in the probability of an infinite 
conducting array to exist. It is zero until C is as low 
as for Eq. (A7) to be valid and becomes abruptly equal 
to 1 as C attains the value set by Eq. (A8). The concen- 
tration defined by Eq. (A8) is recognized as the percola- 
tion threshold for L- 0, C,, and is seen to be the same 
as C, defined by Eq. (A6). 

Expressing C, from Eq. (A6) one finds 

C, = [(e - l)/ez]*‘2 = 0. 79506z-“2 , (A9) 

Several C, values computed by Eq. (A9) are given in 
Table I together with the results of earlier numerical 
calculations. 3 The agreement between Eq. (A9) and the 
Monte Carlo values seems to be reasonable also as far 
as their dependence on z is concerned. The numerical 
data’show an approximately zwn 55 dependence which 
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TABLE I. Percolation thresholds calculated by different 
methods, 

2’ 4 6 8 12 

cca 0. 425b 0.307e 0.24s 0. 204’ 
0.195’ 

C, (present) 0.397 0.325 0.281 0.230 

‘See Ref. 3. 
Wamond. 
?Simple cubic. 
dBody centered cubic. 
‘Hexagonally close packed. 
‘Face centered cubic, (b)-(f) referring to sltc percolation. 

compares well with the .YoS5 dependence predicted by the 
present treatment. Effective medium theory, which can- 
not account for any dependence on z, yields C,(em) 
zo.333. 

The numerical computation refer to site percolation, 
i. e., a case where free passage is barred by certain 
sites becoming insulating. It is contrasted by bond per- 
colation where the bonds which connect different sites of 
the system are thought to be broken. Our model of ad- 
jacent subsystems being either conducting or insulating 
is apparently better related to site percolation. 

Although coordination number appears to be important 
in our present treatment, dimensionality plays no role 
here. The representation of the backbone as a space 
curve with no loops is due to this fact since such a curve 
can usually be folded out in a plane thus the difference 
between two and three dimensions disappears. 
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