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Abstract. Identifying the mechanism of action (MoA) of an unknown,
possibly novel, substance (chemical, protein, or pathogen) is a signifi-
cant challenge. Biologists typically spend years working out the MoA
for known compounds. MoA determination is especially challenging if
there is no prior knowledge and if there is an urgent need to understand
the mechanism for rapid treatment and/or prevention of global health
emergencies. In this paper, we describe a data analysis approach using
Gaussian processes and machine learning techniques to infer components
of the MoA of an unknown agent from time series transcriptomics, pro-
teomics, and metabolomics data.

The work was performed as part of the DARPA Rapid Threat Assess-
ment program, where the challenge was to identify the MoA of a potential
threat agent in 30 days or less, using only project generated data, with
no recourse to pre-existing databases or published literature.

1 Introduction

Lethal chemical and biological agents could be introduced through deliberate
malevolent activity or inadvertent release into the environment. Technologies
that enable rapid characterization of the mechanism of action (MoA) of these
agents would facilitate the identification of countermeasures, such as a known
antidote or antagonist for a specific cellular pathway. Likewise, characterizing
the MoA of pathogenicity of a virus or bacterium could uncover host/microbial
interactions that could be exploited to control the infection.
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A simple representation of this problem is the exposure of immortalized or
primary human cells to the agent in question. Although this model system does
not possess the complexity of the response by an organ or an entire organism,
it still retains much of the challenges associated with trying to infer the MoA
from perturbing biochemical pathways in a living system. At the cellular level,
there are many potential mechanisms affecting cellular processes, such as reg-
ulation of the cell cycle, transcription/translation, metabolism, and signaling.
The molecules that modulate these processes are diverse and their interactions
are complex. Thus, a systems biology approach, i.e., untargeted data collection
from multiple data types (such as comparative analysis of quantitative changes
in the transcriptome [8,28,30], proteome [11,14,23], and metabolome [4,5,22] is
critical for elucidating the MoA [20]. Furthermore, mechanistic events induced
by exposure to the agent may vary over a wide range of timescales following the
challenge; some events occur in seconds to minutes, others take hours to days
to manifest. Thus, it becomes important to gather timeseries data in order to
observe the unfolding of complex molecular changes in the cells.

These considerations motivate a multi-omics timeseries approach to gather
experimental data at the molecular level. Following data acquisition, robust ana-
lytical and network building methods [2,3,10] are used to identify components of
the MoA and their relationships. A primary goal is to identify biomolecules with
significantly altered abundances, as these may represent potential participants
in the MoA. Another goal is to distinguish the agent induced MoA from normal
metabolic activity in a population of cells. There are two main approaches to
arrive at MoA candidates from comparative multi-omics data. Knowledge-based
methods, e.g., Ingenuity® Pathway Analysis (Qiagen) and PANTHER, rely on
combining extensive curated information extracted from biomedical literature
with enrichment analysis of the transcriptomic, proteomic and metabolomic pro-
file changes as a result of the experimental perturbation [13,17]. The algorithms
operating on the knowledge base are used to infer the causal networks underlying
the user data, potential upstream regulators, and potential downstream effects.
Although these methods show strong promise for the identification of the MoA,
they are less useful when the agent is novel because of the scarcity or absence of
curated information. In the absence of reliable knowledge base content for the
studied perturbing agent, de novo approaches can be followed. These can rely on
the analysis of static interaction networks, such as the DeMAND method [29],
or on cross-correlation analysis between the time courses of the differentially
regulated compounds identified in the omics data, e.g., ProTINA [18]. After an
array of potential MoAs is identified, downselection to the potential mechanism
is performed through confirmatory experiments to quantify effects on specific
pathways and/or cellular responses to the agent.

In this paper, we describe data analysis algorithms and workflows developed
to address the need to identify MoA components based purely on comparative
multi-omics time course data. We applied a broad untargeted approach quanti-
fying changes in the transcriptome, proteome and metabolome, using challenge
agents with well-characterized MoAs, to develop and verify the analytic tools and
approaches that would enable rapid MoA discovery. We developed robust tech-
niques for high throughput, high coverage multi-omics data generation and data
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centric analysis. The data analyses were carried out with team members blinded
to agent identity during multiple testing periods. A description of experimen-
tal methods and early results have been reported in prior conference proceed-
ings [24–27]. Here, we detail the approaches used for data analysis, specifically
those approaches based on generating Gaussian process models from time series
data. Multiple approaches for identifying MoA components allowed us to cover
MoAs with diverse characteristics by looking at the data in multiple ways.

Plan. In Sect. 2 we describe the Gaussian process model and analysis workflows
based on this model. Section 3 briefly describes the data to be analyzed. Section 4
illustrates application of the analysis workflow to identify candidate MoA par-
ticipants. Section 5 summarizes, compares to related work, and discusses future
directions.

2 Gaussian Process-Based Analysis Workflow

In the following we present some core parts of our data analysis workflow. The
overall workflow has been represented and automated using JupyterFlow, an
in-house tool developed at SRI International that is based on Petri nets (gen-
eralized dataflow graphs) [7] and integrates features of interactive computing
(Jupyter/Python Notebooks) [12] with data-driven distributed and parallel exe-
cution on heterogenous clusters, typically with GPUs (Graphical Processing
Units) on a subset of the nodes. JupyterFlow integrates with Tensor Flow [1],
which we use both for estimating Gaussian Process Models [6] and for training
Neural Networks (such as the Autoencoders discussed below).

Fig. 1. Small excerpt of the RTA workflow in
JupyterFlow. Each transition in the Petri net is
defined by a Python/Jupyter notebook.

JupyterFlow supports mul-
tiple modes of operations: the
parallel execution of work-
flows on powerful GPU servers,
the distributed execution on
heterogeneous clusters and
the cloud (where GPUs may
be only available on some
machines), and a mode of dis-
connected operation, where
laptops may occasionally syn-
chronize with the main work-
flow, but otherwise can work
independently (without con-
tinuous network connectiv-
ity). Generally, the workflow
executes automatically as a
collection of computational
notebooks with automatically
inferred dataflow dependen-
cies and resource constraints
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(e.g., memory, number of GPUs), which are essential to optimize the location
of computations in the cluster. In addition, each notebook can also be exe-
cuted interactively (e.g., for diagnosis and experimentation). Just as TensorFlow
utilizes a form of dataflow graphs in the small, JupyterFlow utilizes dataflow
graphs in the large. In the case of RTA, our current workflow (see Fig. 1 for a
small excerpt) consists of ≈10,000 notebooks utilizing Python and TensorFlow
that give rise to ≈270,000 metalevel dataflow dependencies (this is not counting
dependencies at the TensorFlow level). We are currently executing this workflow
on SRI’s private cluster (with up to 4 GPUs per node) and in the Google Cloud
(using large instances with up to 48 CPUs and 8 GPUs).

2.1 Gaussian Processes and What They Accomplish

A Gaussian process [21] represents a probability distribution over a parameterized
class of continuous functions. The projection at each time point is Gaussian, i.e.,
normally distributed, with a mean and variance that is explicitly represented in
the Gaussian process model. A time series of observations is defined by sampling
at a finite number of arbitrary time points.

Gaussian process modeling allows us to address several challenges when facing
high-dimensional, very noisy biological time series data. First, observations are
only available at a small number of irregularly spaced time points. Also the
number of observations at each time point may vary. By exploiting the continuity
of the underlying functions, Gaussian processes allow us to benefit from the local
structure to estimate the mean and to provide an explicit estimate of variance at
each time point. The second challenge arises in the integration of multiple data
sources, in our case we have transcriptomic, proteomic, and metabolomic data,
each with different sampling time points, and different amounts of measurement
noise. Again, the Gaussian processes allow us to integrate all data into a uniform
continuous time scale and allow us to build specialized models for each data
source to reflect the biological variation and the measurement error.

Specifically, we use GPflow [6], a library based on Tensor Flow, to esti-
mate Gaussian processes separately for each type of data, for each compound
(transcript, protein, or metabolite), and for treated and control condition. All
observed quantities are uniformly represented in log2 scale. Furthermore, we use
a log-based time scale to reflect the approximate spacing of observations with
more observations closer to the beginning of the experiment (defined as Time
0). The class of functions is generated by a kernel that combines squared expo-
nentials (reflecting biological variation) in the log-based time scale with addi-
tive white noise (to capture measurement error). The squared exponential time
scale parameter is fixed at 2 to reflect the density of available observations. The
squared exponential variance is fixed for each type of data by using an average
of the optimal values over all compounds. The white noise variance is computed
by Maximum Likelihood Estimation (MLE) for each specific compound.

The output of the Gaussian process workflow is a uniform time series for
each compound with 100 time points for control and treated sample means and
the corresponding standard deviations. In reality, the learned Gaussian process
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model is continuous. The 100 time points sample time dimension at sufficiently
many discrete points to preserve the information. The log-ratio time series for
each compound, which is the primary basis for subsequent stages of our workflow,
is then computed by point-wise difference between treated and control. Figure 2
shows example plots.

In addition the confidence in the change (as measured by the log-ratio) is
scored by computing the area between the standard deviation bands for con-
trol and treated samples. We perform computation for 1 and 2 standard devia-
tions, the former to account for the higher degree of noise in the proteomics and
metabolomics data. This provides a ranking of the measured compounds accord-
ing to the area between the bands generated by the standard deviations in the
visualization of Gaussian processes. It generalizes the biologist criteria that for
a significant change the standard deviations of the control and treated samples
should not overlap. This ranking can be used as a first filter to focus attention
on compounds in which we have some confidence in the measured change.

2.2 PCA and the Resulting Ranking

Standard Principal Component Analysis (PCA) is carried out on the log-ratio
timeseries generated by the Gaussian process model to determine the main
sources of variance.1 In the following we refer to the application of PCA along
the time dimension, which yields principal components that are vectors over
the 100 time points, assigning a weight to each timepoint corresponding to its
contribution to the overall variance.2

Our results show that across all experiments, the top three components allow
substantial reduction in dimension and hence in complexity of computations
based on the PCA representation. As few as three components allow us to capture
at least 90% of the variance (typically more than 95%). The output of this stage
is a linear transformation of the time series data into a three dimensional vector
space. As a by-product, the contribution of a compound to each PCA component
provides another ranking of its response to a treatment.

2.3 Many Kinds of Clusterings

Clustering is a form of abstraction, which is essential for the biologist to cope
with the overwhelming amount of observational data. However, since no sin-
gle abstraction technique is superior in all applications, the clustering algorithm
should be seen as an open-ended parameter in our approach. From the large num-
ber of clustering algorithms, we identified three general algorithm types that are
sufficiently scalable to deal with the large number of observed compounds. Each
type focuses on different features and they are all parameterizable to influence
the degree of abstraction, giving the biologist a tunable magnifying glass.

1 We use the machine learning framework [19] for PCA and basic clustering.
2 Alternatively, PCA can be applied along the gene/compound dimension which we

have done in another part of our RTA workflow.
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Our current workflow includes well-known algorithms such as k-means clus-
tering and two kinds of standard hierarchical clustering. It also includes a more
recently proposed density-based hierarchical clustering algorithm (hdbscan) [16]
that is more scalable than the standard ones, and supports partial clustering,
meaning that not all compounds have to be assigned to the generated clusters.

Specifically, our k-means clustering workflow is based on the vector space
arising from the PCA dimensionality-reduction (applied to the log-ratio time
series data) equipped with the Euclidian metric. For tunability we allow the
number of clusters k to range over {16, 32, 64, 128, 256, 512}. The other clus-
tering algorithms are used with Pearson correlation ρ directly derived from
the log-ratio time series data, using 1 − ρ as an affinity measure.3 Stan-
dard hierarchical clustering is performed with two linkage methods (aver-
age distance and Ward’s minimum variance method) that are very familiar
for biologists working with gene expression data. A number of distance cut-
offs are then used to generate clusterings of different granularity from the
hierarchical clustering ({0.25, 0.5, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50} for average and
{2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500} for Ward). Density-based clus-
tering is performed with minimum cluster sizes {2, 3, 4, 5} and an α-parameter
ranging over {0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99} to control the granularity.

2.4 Clustered Cross-Correlation Graphs

Our workflow includes several graph synthesis methods that are intended to sup-
port the biologist in the identification of the MoA. For example, Pearson correla-
tion ρ can be naturally visualized as a family of undirected graphs parameterized
by a correlation threshold. These graphs have compounds (or suitable subsets) as
nodes and edges denote positive or negative correlation ‖ρ‖ beyond the thresh-
old, and they often result in scale-free networks characterized by a power law
node degree distribution [3].

Slightly more generally, we can define cross-correlation graphs by replacing
the symmetric notion of correlation by cross-correlation, which is defined as
correlation between a time series and its shifted version and associated with a
time direction and a time lag. Hence, the resulting graphs are directed. In our
current workflow, we consider discrete time lags in the range 1–20 based on the
Gaussian process representation with 100 time points. We use green (red) edges
to indicate the existence of a positive (negative) cross-correlation with a time
lag in the range, and always perform some pruning of the graph to eliminate
orphan nodes, i.e., isolated compounds. A heuristic is used to keep the size of
the graph manageable and amenable to automatic layout algorithms and to
facilitate interpretability by the biologist.

In spite of these efforts, the resulting graphs are often too low-level or
detailed. Hence, we developed a more abstract notion of clustered cross-
correlation graphs (Fig. 2). Here, cross-correlation is lifted from pairs of com-
pounds to pairs of clusters, as they arise from one of the algorithms in our
3 Another affinity measure we have explored is based on correlated changes (using

time series derivatives) but beyond the scope of this paper.



244 A. Vertes et al.

Fig. 2. Sample clustered cross-correlation graph for Unk5 Genes (see Sect. 4.3) using
PCA-based clustering. Each node represents to a cluster of genes modeled as Gaussian
processes with the color indicating the average log2-ratio (fold change) over time and
over the genes in the cluster (green = increased, red = suppressed). For one cluster we
show the full list of genes and ranked GO-process annotations. The Gaussian models for
sample transcripts are shown in the timeseries plots: green is treated, black is control
(surrounded by 2 standard deviation bands), dots with whiskers show the original data.
(Color figure online)

clustering workflow. The lifting is done through averaging, i.e., cluster cross-
correlation for a fixed lag from a source to a target cluster is defined as the
average cross-correlation for the same fixed lag over all pairs with the first com-
ponent in the source and the second component in the target cluster. Using this
notion, clustered cross-correlation graphs have clusters of compounds as nodes
and defined in complete analogy to the basic cross-correlation graphs. Similarly,
orphan clusters are removed from the graph so that only non-trivial connected
components remain.

The advantage of using cross-correlation as a basis for graph synthesis is that
it is a well-studied concept from signal processing that is visually intuitive for the
biologist. The mathematical simplicity of the concept can however be a disadvan-
tage, since it will miss potential causal interactions of higher complexity that do
not manifest themselves as (homogeneous) time-lagged correlation. Hence, our
workflow contains other complementary techniques for graph synthesis (beyond
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the scope of this paper) based on neural networks which try to learn and exploit
characteristic features in the time profiles.

2.5 Differential Anomaly Identification Using Autoencoders

It is expected that the observed time series data contains many anomalies due
to measurement errors or other forms of noise. However, given that Gaussian
processes allow us to filter most of the noise and smoothen the data to some
extent, any remaining anomalies suggest a potential role in the MoA, and can
give valuable clues in conjunction with the previous results and graphs.

To detect such anomalies we use a variation of convolutional autoencoders
[15]. An autoencoder [9] is a neural network that is a sequential composition of an
encoder and a decoder that together are trained so that the output reconstructs
the original input as closely as possible. The encoder transforms the input (time
series with 100 data points in our case) into a low-dimensional feature space
(we found that as few as 4 dimensions are sufficient to reconstruct most inputs).
In our specific application it is a convolutional neural network (using a window
of size 41) without weight-sharing (reflecting heterogeneity in time) but with
L1-regularization (favoring sparsity), followed by max-pooling, and exponential-
linear activation functions. The decoder is a dense neural network with L2-
regularization and linear activation. In order to prevent certain compounds from
dominating the data set, all input time series are normalized. We use mean square
error as the loss function for training, which uses the Adam-optimizer with a
fixed number of 40000 epochs and a batch size of 1000 (500 for proteomics).
A random subset of 10% of the compounds is used for validation. Autoencoder
models are synthesized separately for transcriptomics and proteomics data sets
as well as for the combination of transcriptomics, proteomics, and metabolomics
data. When building models involving proteomics data we found that adding a
dropout layer between encoder and decoder (with a low dropout rate of 0.01 and
0.0001 for the combined data set) reduced the risk of overfitting.

One of our anomaly-detection workflows aims at detecting what we call dif-
ferential anomalies, that is behavior in the treated condition that is hard to
predict by a model that only learns the behavior under the control condition.
To detect differential anomalies, we use an autoencoder model trained on the
control time series data and apply it to the treated time series data for all com-
pounds to quantify the reconstruction error (mean-square error between original
and predicted time series). We then generate a ranked list of compounds sorted
by this reconstruction error (highest error first).4

2.6 Heuristic Annotation of Clusters

Our workflow implements a generic heuristic method to compute likely classi-
fications of a cluster from classifications of its elements. It is used to annotate

4 We explored some other metrics based on the original (non-normalized) time series
data that we omit for brevity.
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each cluster with a ranked lists of classifications based on GO terms (process
or function) or HGNC families. This is the only use of prior knowledge in our
approach, and serves mostly to interpret proposed MoA candidates.

The generic method assumes a set of classification concepts and a known
relationship between compounds and concepts, which does not have to be one-
to-one (i.e., overlapping concepts or hierarchies are allowed, as they occur for
example in the GO hierarchy). We denote by pc the probability that the concept c
is associated with a random compound (assuming uniform distribution) covered
by the relationship. By fc(S) we denote the number of compounds in a cluster S
that are associated with the concept c, and by f(S) we denote the corresponding
sum over all concepts. For each cluster S we use the score sc = −fc(S) log2(pc),
which is the logarithm of 1 − p

fc(S)
c , to rank all concepts for the given cluster.

In our workflow, we use GO processes, GO functions, and HGNC families as
sources of classification concepts. In each case, we use the top 10 concepts c to
label each cluster S with (c, fc(S), f(S), sc), or a few more if there is a tie in the
score. The label makes it explicit that the classification c is based on fc(S) out of
f(S) concepts. Intuitively, our scoring function reduces the impact of frequently
occurring concepts (low information content) but amplifies the impact of co-
occurring concepts (a form of confirmation) in the same cluster. It should be
noted that the scoring function does not rely on expression levels of compounds
and is not intended for comparisons between clusters.

3 The Omics Data

The data to be analysed was generated as follows. HepG2/C3A hepatocyte were
exposed to five different challenge agents: forskolin, nocodazole, bendamustine,
nexturastat A, and atorvastatin. Molecular responses were measured from three
biological replicates at eight to ten time-points between 10 s and 48 h post-
exposure by microarray-based transcriptomics, multiplexed high-resolution LC-
MS shotgun proteomics, and novel untargeted metabolomics to quantify >67,000
transcripts, >5,000 proteins and >200 metabolites. Immuno-assays and qRT-
PCR were performed to validate the proteomic and transcriptomic data, respec-
tively. Biological assays were performed to down select and confirm the MoA
candidates inferred from the various data analyses.

The challenge agents spanned a wide range of mechanisms: forskolin is a
diterpene that activates the enzyme adenylyl cyclase and the cAMP signaling
pathway; nocodazole is a microtubule-targeting agent that disrupts microtubule
polymerization and induces cell cycle arrest in the prometaphase; bendamustine
is an alkylating agent with a nitrogen mustard group which causes the formation
of crosslinks between DNA bases; nexturastat A is an inhibitor of HMG-CoA
reductase which is a key step in cholesterol biosynthesis.

4 Choosing MoA Candidates

In this section we illustrate the use of the Gaussian process based analyses of
time series omics data to identify candidate participants in the MoA in response



Inferring Mechanism of Action of an Unknown Compound 247

to exposure to a challenge agent. We begin with an overview of the process we
developed and then illustrate the ideas using data from two of the challenge
compounds studied.

4.1 Overview of Selection Process

In addition to the Gaussian process (GP) based analysis we carry out some stan-
dard time series analysis to provide a cross check. For each entity, the log2 fold
change was computed at each of the measured time points as the difference of the
log2 of the means of the control and treated replicates. We refer to these change
vs time plots as basic time profiles. Time points for which the set of control
measurements are either all above or all below the set of treated measurements
are annotated as significant.5

The Shape of Response. Before looking for specific candidate MoA participants
we look at the shape of the overall response in two ways: the level of up/down
regulation at each timepoint; and the population level cell cycle state over time.
For the levels of up/down regulation we make udby (Up/Down By) charts. These
are bar charts plotting the relative number of entities that are first up/down
regulated by a given threshold amount at each measured time point. This gives
a visual representation of the overall shape of the response (when are events
happening). The given threshold magnitude is typically between .5 and 1 log2
fold change, adjusted to ensure at least 3–5% of the measured data is included.
Maps are also computed associating to each entity the maximum and minimun
log2 fold change along with the times the extrema are reached. Figure 3 on the
left shows the udby chart for Unk3 transcripts (based on the basic time profile).
From the chart we observe activity at 4–6 h and 18–24 h, but there is a lull at 8 h.

Fig. 3. Up/Dn By Chart and Cyclin gene plots for Unk3

Information about population cell cycle state is visualized by plotting the time
series profiles of four key Cyclins. The shape of these plots contains information
about whether or not the perturbing agent disrupts the cell cycle and if so at
5 Currently we restrict analysis of transcriptomics data to protein coding genes.
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which points. Figure 3 on the right shows the basic time profiles of Cyclin mRNA
expression for Unk3 transcripts. From the plot we see a pattern of Cyclin mRNA
expression that reflects a transient S phase arrest followed by a synchronized
transition through the cell cycle and an apparent arrest at G1/S. The reasoning
and the reason it is interesting to look at the cyclins is as follows. Cyclins are
proteins whose protein and mRNA concentrations vary at different stages in the
cell cycle. As long as the cells are growing exponentially, the proportion of cells
in each cell cycle stage stays constant and the expression of each cyclin does not
change over time. An increase in the expression of cyclin E2 (CCNE2) indicates
that the proportion of cells in S-phase is increasing. If the arrest were permanent,
the level of CCNE2 would stay high for the rest of the time course. The decrease
in CCNE2 expression from 6–18 h indicates that the arrest is transient.

Cross Correlation and Visualization. To provide a visual summary of the poten-
tial relations among responding elements, we use the cross-correlation graphs
on clusters (described in Sect. 2.4). Graph nodes are annotated by results from
analyses including: classification, cluster members, average change, GO terms
and family classifications (see Fig. 2). One can visually identify potentially inter-
esting nodes by criteria such as being input, output, or highly connected, i.e.,
with high betweenness centrality, and use the annotations to drill down.

Filtering and Ranking. We consider several criteria for selecting or ranking tran-
scripts, proteins and metabolites (aka entities). The 1sd and 2sd separation
properties identify entities with statistically significant change by measuring the
space between one or two standard deviation bands around the control and
treated GP time profiles as explained in Sect. 2.1. The udby .th property holds
for entities that have a significant log2 fold change of at least th at some mea-
sured time point, where th is typically between .5 and 1. This is computed using
the basic time profile, using the significance annotation at each time point. The
delta.th property holds of an entity if the difference between the maximum and
minimum log2 fold changes (in the GP time profile) is greater than th. This is
relevant because the GP profile may be shifted up or down, or over smoothed
(likely due to sparse or noisy data) so that the GP time profile is essentially
flat. Figure 4 shows properties for transcripts from the Unk3 data. All of these
transcripts satisfy the 2sd , udby .75 , delta.1 properties. The table also includes
the upby .75 time, and the time and magnitude of the maximum fold change
(mxt,mxlf ) computed from both the basic and GP profiles (L,G).

Fig. 4. Examples of properties for Unk3 transcripts.
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The pca.r and pca.d ranking functions assign rank n (smaller is better) to
an entity if it appears as the nth element in the ranked list of one of the PCA
components (positive or negative), where the PCA analysis is based on the GP
ratio time profile or its derivative, respectively. From Fig. 4 we see that the
example transcripts all have rank below 20 for at least one PCA analysis.

The timem, time, diffm, and diff ranking functions assign rank n to an entity
if it is the nth element in the ranked list according to the corresponding anomaly
calculation as described in Sect. 2.5. timem and time anomaly rankings are based
on the GP ratio time profile where for timem the mean square error is computed
after transforming the model back to the original data scale, while for time
it is computed on the normalized model. Thus timem is biased towards larger
changes. diffm and diff anomaly rankings are based on predicting the treated
time series from the control time series. In the case of the example transcripts
of Fig. 4, none have an anomaly rank below 100. Only timem is shown. Given
these properties and ranking functions we combine them by conjunction and
disjunction to select subsets of entities for further examination.

Feature Summary Spreadsheets. As an aid to exploring the candidate subsets we
summarize the above properties/ranks and other information in a spreadsheet
with rows corresponding to entities in some subset of interest. The columns
record satisfaction of properties, ranks, and results from other computations.
(Figure 4 is a selection from one such spread sheet.) The entities can then be
grouped by sorting on different combinations of columns to hopefully reveal key
players. The columns include the ten properties and rankings discussed above.
There are also columns labeled cl .r and cl .d that record the number of the cluster
containing the entity, using the PCA K-means clustering (with 128 clusters for
transcriptomics and proteomics). cl .r similarity is based on the GP ratio time
profile and cl .d similarity is based on the derivative of the GP ratio time profile.
We also include columns maxlf , minlf , maxt , and mint recording the log2 fold
change maximum, minimum, and corresponding times.

Picking Winners. With all the analyses, properties, and ranking functions in
hand, the challenge is to identify the most significant responders to the treat-
ment. The main criteria of success is whether the data somehow reveals the
‘canonical’ MoA. But there are generally many possibly important things going
on that are not included in the canonical pathway. Perhaps the data will reveal
something new.

We start by investigating two subsets. One subset is the entities that satisfy
a separation property (1sd or 2sd) or an udby property (udby.th). The choice of
property within the two classes is determined by initially wanting to limit the
number of candidates to ∼1000 or less. The other subset contains the entities
that rank in the top n of one of the six ranking functions. Generally, taking n
to be 20 gives us a reasonable set to consider.

We make feature summary spreadsheets for each of the two subsets and
look for groups that stand out according to some collection of features. When
sorting by one of the cluster columns we can get additional information by
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looking at the annotations (GO term or family classifications) associated with
clusters that have a relatively large number of elements from the subset under
consideration. Of particular interest are the most specific annotations. GO terms
such as signal transduction, cell cycle, or metabolic process don’t tell you much
although they can support conjectures derived from clusters annotated with
more specific terms.

4.2 Challenge Compound Unk3

For Unknown 3 (henceforth Unk3) the transcriptomics data supported basic time
profiles for 18208 transcripts and GP-based time profiles for 18834 transcripts.
There were 4396/2803 transcripts that had a log2 fold change magnitude of at
least 0.75 at some time point according to the basic/GP timeprofile. Of the 2803
transcripts identified by GP-based analysis, 1579 satisfied the delta.75 property
(defined in Sect. 4.1). The difference between basic and GP-based results has to
do with the Gaussian process smoothing and integrating all the data, while the
basic analysis computes changes point-wise. There were 4993 transcripts that
passed the one standard deviation separation filter (satisfied 1sd), while 1627
transcripts passed the two standard deviation separation filter (satisfied 2sd).

The udby chart for Unk3 transcripts and the time profiles of Cyclin mRNA
expression have already been presented in Sect. 4.1. Now we look at the top
ranked transcripts according to PCA ranking and anomaly ranking. Thus we
defined top20PCA-u3 to be the set of transcripts ranked in the top 20 of one
of the three PCA components (positive or negative), using PCA based on the
GP time profile or its derivative. We defined top20anom-u3 to be the set of
transcripts ranked in the top 20 of one of four anomaly measures (timem, time,
diffm, diff). We let top20anomPCA-u3 denote the union of top20PCA-u3 and
top20anom-u3. To get a first impression of how the filters based on statistical
significance relate to filters based on features we compared the PCA and anomaly
ranked sets to those passing the one and two standard deviation separation filters
(1sd , 2sd respectively) and to the filter selecting transcripts with log2 fold change
magnitude at least 0.75 at some time point (ud). The numbers in each set and
their intersections are shown in Fig. 5.

Fig. 5. Overview of rank-based selections for Unk3.
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We see that the ranking according to PCA vs anomaly is quite different, only
16 transcripts pass both filters. Also, the statistical filters overlap substantially
with the PCA based filters, but much less with the anomaly based filters.

For the next step we chose to focus on the top20anomPCA-u3 and produced
a sortable feature table with one row for each transcript in top20anomPCA-u3.
Sorting by feature (PCA or anomaly) doesn’t give any obvious insights. So, we
sort by cluster (ratio-based or derivative based). We start by looking at clusters
that contain at least six elements from top20anomPCA-u3 and search the GO
annotations associated with these clusters for the most specific annotations. The
second annotation of Cluster 16 is “DNA damage response, signal transduction
by p53 class mediator resulting in cell cycle arrest [GO:0006977]”. This cluster
contains CDKN1A, FAS, MDM2, PPM1D, SFN, POLH, (P53 responsive and
DNA repair genes). With this clue we look further and find two more clusters
with this annotation and several additional clusters with DNA damage/DNA
repair annotations. The transcripts in these clusters are up-regulated early (by
2–6 h) and reach a maximum around 24 h. Consistent with the observation based
on the plot of the time profiles of the Cyclins (Fig. 3), four of the larger clusters
are annotated with GO terms related to G1-S transition. Two of these clusters
are down regulated by 18 h and reach minimum at 48 h, while two have periods
of up and down regulation. The highly ranked POLH, upregulated between 4
and 24 h, is a DNA polymerase involved in DNA repair.

We conclude that the treatment likely resulted in DNA damage leading to
a P53 response in addition to the temporary cell cycle arrest. After the mea-
surements and data analysis, Unk3 was revealed to be bendamustine, known to
crosslink DNA strands and interfere with DNA damage repair mechanisms. This
confirmed the results of the analyses.

4.3 Challenge Compound Unk5

For Unknown 5 (henceforth Unk5) the transcriptomics data supported basic time
profiles for 15685 transcripts and GP-based time profiles for 17347 transcripts.
There were 570/407 transcripts that had a log2 fold change magnitude of at least
.75 at some time point according to the basic/GP time profile.

Of the 407 transcripts identified by GP-based analysis, 272 satisfy delta.75 .
There were 4442 transcripts that passed the one standard deviation separation
filter, while 1287 transcripts passed the two standard deviation separation filter.

Figure 6 shows the udby chart for Unk5 transcripts and the time profiles of
Cyclin mRNA expression. From the chart we see that the bulk of the transcrip-
tomics activity happens at 18 h or later. From the Cyclin plot we see a pattern
of Cyclin mRNA expression that reflects a permanent arrest in G1, namely the
steady increase in Cyclin D2 (CCND2) after 24 h.

As for Unk3, we next look at the top ranked transcripts according to PCA
ranking and anomaly ranking. Thus we defined top20PCA-u5 to be the set of
transcripts t ranked in the top 20 according to PCA ranking, that is pca.r(t) < 20
or pca.d(t) < 20. We defined top20anom-u5 to be the set of transcripts t ranked
in the top 20 according to one of the four anomaly measures, i.e., timem(t) < 20
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Fig. 6. Up/Dn By Chart and Cyclin plots for Unk5

or time(t) < 20 or diffm(t) < 20 or diff (t) < 20. We let top20anomPCA-u5
denote the union of top20PCA-u5 and top20anom-u5. As for Unk3, the rank-
ing according to PCA vs. anomaly is quite different, only 24 transcripts pass
both filters. We note that top20anom-u5 and top20PCA-u5 contain eight metal-
lothioneins: MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, and MT1X.
These transcripts appear in four different clusters, all are upregulated by 1 h and
reach a maximum between 2 h and 8 h.

For the next step we chose to focus on the top20anomPCA-u5 and produced a
sortable feature table with one row for each transcript in top20anomPCA-u5 and
columns as described in Sect. 4.1. Sorting by cl .r (ratio based clustering) we find
three relatively large clusters annotated with Cholesterol Biosynthetic process
GO terms. Two more clusters are annotated with metabolic process GO terms.
Cluster 54 contains HMGCS1, HMGCR, MVD, LSS, FGB, JUN, JUND, and
TCP11L2, the first four are enzymes in the canonical Cholesterol biosynthesis
pathway (see Figs. 2, 7). All of the entities in the cluster are up-regulated midway
and reach a maximum late. The Cholesterol enzymes pass the .75 threshold at
18 h and reach a maximum at 48h. Five clusters are annotated with metal ion
and zinc binding GO terms. Sorting by cl .d (derivative based clustering) we find
two clusters annotated with Cholesterol Biosynthetic process GO terms and one
with Cholesterol import. There are three clusters annotated with metal ion and
zinc binding GO terms.

Although the proteomics data for this pathway is too sparse to be highly
ranked by the GP analysis, once we have the clue, we plot the raw data for
transcripts and proteins in the pathway and see a general trend for slow steady
up-regulation and a remarkable agreement between transcripts and the proteins
they code for. The metabolomic data plots for Cholesterol and Chenodeoxy-
cholic indicate possible down regulation sometime after 8 h, adding evidence to
a conjecture that the unknown is inhibiting something in that pathway and the
cells are responding by trying to make more. This is illustrated in Fig. 7.

After the omics experiments and data analysis, Unk5 was revealed to be
atorvastatin, an inhibitor of HMG-CoA reductase (HMGCR), as proposed by the
analysis. The strong early response by the metallothioneins remains a mystery
to be further investigated.
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Fig. 7. Canonical Cholesterol pathway annotated with Unk5 data

5 Conclusions and Future Directions

We have presented a collection of algorithms and reproducible workflow for anal-
ysis of comparative multi-omics time series data. The goal is to be able to identify
candidate participants in the MoA of chemical or biological agents using data
analysis, without recourse to prior knowledge such as interaction and pathway
databases. The algorithms are based on Gaussian process models that leverage a
large number of data points to derive useful information from data that may be
noisy or have missing data points. The Gaussian process models support inte-
gration of timeseries based on different sets of time points and different types
of data. The workflows produce several functions for ranking candidates accord-
ing to different features, functions for grouping entities according to different
similarity criteria, and graph generation algorithms for visual representation of
correlations and potential causality relations among entities or groups of entities.
Each function and relation brings different insights into the cellular response to a
perturbation. We illustrated the application of this computational analysis suite
to identify key elements of the MoA of two unknowns, eventually revealed to be
bendamustine and atorvastatin.

As mentioned in Sect. 1, existing approaches to determining the MoA of a
cellular perturbation rely on existing knowledge, and may work with only single
timepoints or a small number of timepoints (see [18] for an extensive overview).
Two recent works [18,29] based on network analysis are perhaps the closest to our
approach. DeMAND [29] scores candidate MoA proteins based on an assessment
of the global dysregulation of their molecular interactions following perturbation,
based on an input gene-protein interaction network. Multiple time points can
be used, but the temporal information is not used. ProTina [18] creates a cell
type specific protein-gene regulatory network (from existing knowledge bases)
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based on a dynamic model of the gene transcription. Protein targets are scored
based on the enhancement/attenuation of protein-gene regulations. The dynamic
model allows inclusion of temporal information in the scoring process. Note that
in contrast, our approach does not require a regulation network as input.

Future Directions. We note that in contrast to usual work where a single app-
roach is developed and validated against synthetic and experimental data, our
workflows result in multiple approaches modeling diverse features that might be
observed as part of an MoA, giving a flexible tool set for analyzing data from
a truly unknown perturbing agent. One important future direction is validat-
ing the approach on a wide class of cellular perturbations and to generate a
validated characterization of each of the approaches. The current tool suite is
used by experts in computational modeling. Increasing the level of automation
for identifying MoA candidates by combining the different approaches and inte-
grating the visualization capabilities would make the capabilities accessible to
more researchers and hopefully help to advance research in MoAs at the cellular
response level.6
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